Find the Fractional Form of a Repeating Decimal

I think math shortcuts and tricks are groovy. Here’s an arithmetic trick to find the fractional form of a repeating decimal.

Generally speaking, if the repeating decimal has a as the repetend, then the fraction that is represented by that repeating decimal is just   a/Z where Z is a number with the same number of digits as a, but all the digits are 9’s.

For example, the let’s find the fractional form of 0.567567…

a = 567 => 0.567567… = 567/999  (= 21/37 after reduction)

Leave a Reply

Your email address will not be published. Required fields are marked *