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2. In this work

These notes began as my way of attempting to understand examples of
abelian varieties (over finite fields) whose formal group laws posess higher
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height. Indeed, the notion that the height of a formal group law encodes
the symmetry of the underlying abelian variety is a notion that I found
irresistibly attractive to attempt to make precise and explore with examples.

I wish to mention that this set of examples is different than those of
Gorbunov-Mahowald, as they define varieties with formal group laws of
height p− 1 for every prime p.

To create formal group laws of higher heights h ≥ 3, we will need to look
at varieties of dimension higher than one by Cartier duality 1.

To find formal group laws of dimension 1, we will split these formal group
laws into a formal summand, and prove that there exists a height h compo-
nent of dimension 1.

This paper will construct examples of abelian varieties whose formal group
laws are of higher height, prove they are Lubin-Tate. This is motivated by
a computation in algebraic topology, but is of independent interest.

Remark. I wish to argue for a indirect construction of the variety which gives
us formal group laws of higher height. We use the philosophy that if one is
unable to directly construct local things, one can instead construct a global
thing and completing/specializing to get the desired local thing.

There are many global things that specialize to the same local thing. We
choose the variety Cm/Z[ζN ] as our global model because its endomorphism
ring is very simple2 – it is (and at the very least contains) Z[ζN ], and its
automorphism group is Z[ζN ]×. For N prime, by Dirichlet’s unit theorem,
Z[ζN ]× ' Z/NZ× × Z(N−3)/2

3. How to use the splitting of a prime to decompose your
variety

The catchphrase to keep in mind is: construct formal group laws of higher
height by constructing abelian varieties with larger endomorphism rings,
then splitting appart those abelian varieties via the splitting of a prime.

1We represent p-divisible groups as a finite product of Gr/s where r is their dimension
and s is their height, and the Cartier dual of a p-divisible group takes Gr/s 7→ Gs−r/s. If
we request a p-divisible group with a piece of dimension 1 height 3, we wish for G1/3 but
since abelian varieties admit polarizations, the p-divisible group must be its own Cartier
dual, it must be of the form:

G1/3 ×G2/3

so it’s total dimension is 1 + 2 = 3. Thanks to Andrew Salch for this explanation.
2Unless it is what Taniyama-Shimura call degenerate, then the endomorphism ring is

a little more complicated.
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3.1. Defining the variety in characteristic 0. First, we define our va-
riety in characteristic 0. This is a basic construction of Taniyama-Shimura
to get abelian varieties of complex multiplication type. Let A be a complex
manifold Cg/OK , of dimension g, with an action of OK , where [K : Q] = 2g.
Let K be a CM -field.

Remark. Here K must be a CM-field in order to have the manifold Cg/OK

admit a Riemann form.

Let K0 be a totally real number field of degree g, in our case, we take
Q(ζ7 + ζ−17 ), let K be a totally imaginary extension of K0 (in our case,
Q(ζ7)), and let OK be the ring of integers of K.

Since K is totally imaginary, the embeddings into C come in conjugate
pairs. We pick g non-conjugate embeddings of K into C: σ1, · · · , σg.

We embed OK ↪→ Cg by a 7→ (σ1(a), · · · , σg(a)).

Lemma 1. A is an abelian variety.

Proof. By Silverman, a complex manifold Cg/Λ is an abelian variety over C
iff it admits a Riemann form. Our variety indeed admits a Riemann form.
Let ξ be an element OK such that −ξ2 is a totally positive element of K0

(where K0 = Q(ζn + ζ−1n ), we choose ξ = ζn − ζ−1n ).
By [2] pg. 93, there is nondegenerate form on the torus Cg/Λ defined by:

B(z, w) = 2
∑g

j=1 Im(σj(ξ))zjωj �

The CM -type of this variety is the description of the action of the en-
domorphism group of the variety on the tangent space of the variety which
I’ll call Lie A, it gives a spectral decomposition of the action of the number
field K. In this case, the CM -type is simply σ1, ..., σg.

3.2. Base change outline. You may righteously ask – why are we starting
over char 0 in order to define thing of higher height? Height only makes sense
over char p, what nonsense! We will in the end use a theorem about abelian
varieties with a CM action by a finite extension of Qp, over a characteristic
p field.

The process of base change from this initial A(C) we will outline, as it
confused the author to no end.

We begin with a variety A(C) with an action of Q(ζn) and show that we
may present it as A(Qp) with an action of Qp(ζn). Then, if the variety has

good reduction, we may extend to a variety A(Zp) (and by the functoriality
of the Neron model, this still carries the action of Q5(ζn)). Then, we may
look at a special fiber of A(Zp) to get A(Fp), the characterstic p model we
were looking for all along [5].



4 CATHERINE RAY

3.3. Idempotent decomposition based on splitting of the prime.
Now that we’ve defined the variety in characteristic 0, we will split apart
the variety on the level of its p-divisible group by tensoring with a prime
and looking at how the action of Fröbenius splits.

Our abelian variety A is defined over some K ′ (a finite extension of Q 3)
with an action of OK . We look at the pn torsion points of A(K ′):

A[pn] ⊂ A(Q)

Remark. A[pn] ' (Z/pnZ)2g

There is an action of OK/p
nOK on A[pn], indeed, A[pn] is a free OK/p

nOK

module of rank 1.
We will use the splitting of the prime p in OK in order represent our p-

divisible group as a sum (i.e., break up our p-divisible group into smaller
dimensional pieces):

Given p ∈ Z,

p = p1 · · · pr
in OK . We think of the number 1 as being 1 =

∑r
i=1 ei, where

ei =
(
0 · · · 0 1 0 · · · 0

)
where 1 is in the ith position.

Further,

OK/p
n =

r∏
i=1

OK/(pi)
n

=
r⊕
i=1

eiOK/p
n

In this way:

A[pn] =
r⊕
i=1

eiA[pn]

where eiA[pn] = ker(
∑

j 6=i ej : A[pn]→ A[pn]).

That is, we decompose A[pn] into idempotents, and this decomposition
comes from the splitting of the prime p in OK .

Note also that each part of the p-divisible group is an OK-module, and
the action of OK preserves this splitting.

3the reflex field, though I think this notion is distracting from the point.
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4. How to deduce the dimension and height of the formal
group law

We earlier decomposed our p-divisible group into

A[pn] =
r⊕
i=1

eiA[pn]

.
To deduce the dimension of the formal group law associated to eiA[p∞]

over Fp, we use the CM -type, and the Taniyama-Shimura formula. Here, we
are treating our variety as living over Fp and having complex multiplication
by a finite extension of Qp. Then:

#(orbitpi ∩ CM-type)

#(orbitpi)
=

dimension(Fi)

height(Fi)

Here, orbitpi is defined as the elements in the subgroup Gal(Kpi/Qp) of
Gal(OK/Qp). We use Fi to denote the formal group law associated to the p-
divisible group eiA[p∞] (that is, Fi is the connective component of eiA[p∞]).

Note that it makes makes good sense to look at CM -type while talking
about A[pn], the tangent space of of A(Qp) agrees with the tangent space of
the p-divisible group.

Remark. The resultant formal group law lives over the reflex field K ′ of the
CM-pair.

5. Example: Height 3 Case

Given a height 3, we wish to construct an abelian variety whose for-
mal group law splits into a one-dimensional component and an (n − 1)-
dimensional component, and this one-dimensional component is height 3.
We do this as follows:

Let K = Q(ζ7). Let A be the three dimensional abelian variety C3/Z[ζ7]
over C where Z[ζ7] is embedded in C3 by the following three homomorphisms:

Φ : K → C× C× C
a 7→ (σ1(a), σ4(a), σ5(a))

Here, σa is the homomorphism K → C which sends ζ7 7→ ζ a
7 .

To be gruesomely explicit, we are thinking of the lattice Φ(Z[ζ7]) =
Z{Φ(1),Φ(ζ7),Φ(ζ27 ),Φ(ζ37 ),Φ(ζ47 ),Φ(ζ57 )}.

Remark. We can here, for σi1 , σi2 , σi3 , choose any non-conjugate collection.
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Then A has an action (“has complex multiplication”) by OK = Z[ζ7]. Let
p be a prime number such that p mod 7 = 2 or 4 mod 7.

We choose this p becase 〈p〉 ⊆ (Z/7Z)× is a subgroup of order 3 (i.e.,
23 = 43 = 1 mod 7). Thus Q(ζ7)⊗Qp ' K ×K where K is the unramified
extension of Qp of degree 3. We call the first K1 and the second K2.

Remark. This splitting into degree 3 components in the case p = 2 is due to
the splitting of φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1 when we tensor with
Q2. We can see that φ7(x) ≡ (x3 + x2 + 1)(x3 + x+ 1) mod 2, we check the
derivative condition, and we apply the Hensel lemma to lift this splitting to
Z/2nZ for every n.

We wish to look at the orbit of the characters in Ki, that is, we look at
the action of Gal(K1/Qp) ⊂ Gal(Q(ζ7)/Q) on ζ7.

One of these orbits is the collection of all squares mod 7, that is: (1, 2, 4).
The other orbit is the remaining elements of (Z/7)×, that is, (3, 5, 6).

Recall that our CM-type is (1, 4, 5):

• (1, 2, 4) ∩ (1, 4, 5) = (1, 4)
• (3, 5, 6) ∩ (1, 4, 5) = (5)

Thus, by (∗):
• dimension(F1)

height(F1)
=

#(orbitp1∩CM-type)

#(orbitp1 )
= 2

3

• dimension(F2)
height(F2)

=
#(orbitp2∩CM-type)

#(orbitp2 )
= 1

3

So, F2 is a 1-dimensional formal group law of height 3.

Remark. Note that we could also choose the CM-type to be (1, 3, 5) in which
case the squares give us the 1/3 piece.

Example 2. In the height 5 case, we can take the CM-type (1, 2, 4, 5, 8)
and orbits again the squares (1, 3, 4, 5, 9) and nonsquares (2, 6, 7, 8, 10), we
also get a dimension 1 formal group law of height 5.

6. Varieties that model formal group laws of every height

Given a height h, we wish to construct an abelian variety whose formal
group law splits off one-dimensional component, and this one-dimensional
component is height h. We do this for a general height h.

To construct such a variety, we attempt to generalize the case of elliptic
curves by quotienting copies of C by a ring of integers, in this case the ring
of integers of Q(ζN). The degree of the extension of Q(ζN) over Q is φ(N),
this is the same as the number of embeddings of Q(ζN) ↪→ C.

We take
A := Cφ(N)/2/Z(ζN)
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The actual embedding of Z(ζN) ↪→ Cφ(N)/2 that we choose will depend on
the height and N . We will call this embedding the CM -type of our variety
A.

6.1. Which Q(ζN) to choose. First, we simply show, given a height h,
which N to choose.

(1) Given h even, pick a prime number N1 such that N1 ≡ 1 mod h.
Then, choose N = 4N1.

(2) Given h odd, pick a prime number N such that N ≡ 3 mod 4, and
N ≡ 1 mod h.

Remark. Note that if N is a prime number, N - h ⇐⇒ N ≡ 1 mod h.

Remark. In the even case, we look at N = 4N1 and not at N1 because we
wish to use the order 2 subgroup of Gal(Q(ζN)/Q) ' (Z/N)× to isolate
a 1-d component, i.e., we want to make sure we can find a CM-type with
intersection 1.

Let’s talk about this in more detail. Let us examine how the characters
of ζN factor through K1. We represent each character as its splitting into
(ζN1 , ζ4). The characters that factor through K1 which contain (ζN1 , ζ4) are
of the form (ζpkN , ζ4), for k = 0, ..., h− 1.

By (∗), the number of elements in the intersection of the CM -type and the
elements of ζN that factor through Ki is the dimension of the corresponding

formal group law, i.e.,
#(orbitp1∩CM-type)

#(orbitp1 )
= dimension

height
. So, in order to have the

CM -type have only one element in common with the orbit of K1, we want
the CM -type to contain

{(ζN , ζ4), (ζp
k

N , ζ
−1
4 ) for all k = 1, 2, ..., n− 1}

This puts a restriction on p in the next section, this requires p to be 1
mod 4.

Remark. In the odd case, we choose N to be 3 mod 4 because if N is 3
mod 4, then (ζaN)−1 6= −ζaN . Futher, if N ≡ 3 mod 4, only one of a and its
conjugate N − a will be a square mod N .

We may view the choice of N and of CM-type as the partioning of a ∈
(Z/NZ)×. Our first partition is into a and the conjugates, N − a. Our
CM-type we wish to be a transverse partition – for example a is a square
mod N , a is not a square mod N .

If we wish for the CM-type to intersect one of the orbits in only one

spot due to theorem (*) which tells us that dimension(Fi)
height(Fi)

=
#(orbitKi

∩CM-type)

#(orbitKi
)

.

Let’s say orbitKi
= (a1, a2..., an). Then, we may pick the CM -type to be
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(a1, a
−1
2 , ..., a−1n ) to get #(orbitKi

∩ CM-type) = dimension(Fi) = 1. This is
always legal by our careful choice of N above.

6.2. Which prime p to choose. Now, let’s talk about, given a height h
and an extension by φN , which prime p to choose. These restrictions give
us that nice transverse partition we are looking for.

• h is odd, find p such that p is of order h in (Z/NZ)×

• h is even, find p such that p is of order h in Z/N1Z)× and p ≡ 1
mod 4.

We want a prime p such that 〈p〉 ⊆ (Z/NZ)× is a subgroup of order h
(i.e., ph ≡ 1 mod N), which implies that

Q(ζN)⊗Qp '
r∏
i=1

K

Remark. That is, it splits into r copies of K where K is the degree h un-
ramified extension of Qp: these r copies come from the splitting of p in
OK = Q(ζN) into p = p1 · · · pr, and we label them accordingly.

Remark. In general, r := φ(N)/h.

Remark. In the even case, we have the further requirement that p ≡ 1
mod 4, that is, in the situation:

〈p〉 ⊂ (Z/NZ)× ' (Z/4Z)× × (Z/N1Z)×

p 7→ (1, α)

Here are the first few examples:

height h g = φ(N)/2 N N1 p
3 3 7 2, 4 mod 7
4 4 20 5 17
5 5 11 3, 4, 5, 9 mod 11
6 6 28 7 5 mod 7
7 21 43 4, 7, 11, 16, 21, 35, 37, 41 mod 43
8 16 68 17 9 mod 17
9 9 19 4, 5, 6, 8, 9, 12, 16, 17 mod 19

Remark. This method seems to work for much lower primes in the odd height
case. It is of interest to modify the method to work for lower primes in the
even height case.
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7. Appendix: Reflex Fields of CM-pairs

The reflex field of a CM -pair is the minimal field over which the Lie
algebra of your variety may be defined.

More specifically, given an abelian variety A(k) it is the smallest field F
such that the the Lie algebra T , naturally a k-vector space, may be thought
of as an F -vector space T (F ) with the property that T (F )⊗F k = T (k).

Let’s define the reflex field of the CM-pair (L, φ). In our case, L =
Q(ζN). The reflex field E ′ ⊂ Q is the fixed field of the subgroup {σ ∈
Gal(Q/Q)|σφ = φ} where φ is the CM -type. By definition, E ′ belongs to
the Galois closure of L in Q (since the group fixing the Galois closure fixes
all embeddings of L). Note that this Galois closure makes intrinsic sense
even though L is not given as a subfield of Q. [3]

So, we may compute the reflex field much more easily. In our case: E ′ ⊂
Q(ζN) is the fixed field of all n ∈ (Z/pZ)× that satisfy nφ = φ.

Example 3. In the case φ = (1, 2, 4), this fixed field is Q(
√
−7), because

(1, 2, 4) is a subgroup of (Z/pZ)× and is its own stabilizer.

Example 4. In the case φ = (1, 4, 5) or (1, 2, 3), then the only n such that
nφ = φ is n = 1. Therefore the fixed field is everything, that is: Q(ζ7).
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