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Thanks to Yifeng Liu for being our advisor in this reading course.

Remark. Our goal this reading course was understand some of Scholze’s recent work
with perfectoid space techniques, in particular the proof of the monodromy weight
conjecture (what he might call “phase 1” 1).

This is only the texed notes of my (Catherine’s) lectures. During the reading course,
I got the increasing feeling that we were just studying GQ as fast as our little legs could
take us – our little legs being our knowledge of varieties (over various non-archimedian
fields like Qp and Fp((t)). So, I finished with a talk on the Grothendieck-Teichmüller
group – another approach to GQ.

1. Lecture 1: The Category of Rigid Analytic Spaces: A Motivated
Definition

We will take a journey through history to understand the reasoning behind the defi-
nition of rigid analytic spaces.

1“Scholze describes three “phases” of study, applying them to different topics in number theory.
The first phase was giving a correspondence between geometry in characteristic zero and characteristic
p, with the goal of proving Delignes weight-monodromy conjecture. The second phase was studying
p-adic Hodge theory, and how it varies in families. The third phase discussed here is the realization of
important special cases of “infinite-type rigid geometry” via perfectoid spaces.” - [12]
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1.1. Quotient Models of Elliptic Curves over C.

Remark. Qp is Frac(Zp), and Qp is completion wrt the p-adic norm.

We will work up to the notion of rigid analytic spaces. Where did they come from?
Does the formulation work for even the most basic example. We will not focus on the
actual equations in the equation-based approach, for it is the most elementary way of
approaching Tate’s theorem.

Now, for elliptic curves over C, we have a nice isomorphism.

C/(Z⊕ Zτ)→ E(C)

z 7→ (p(z), p′(z))

where Im(τ) > 0, with the isomorphism given in terms of the Weierstraß p-function.
There is another way to write the curve C/(Z ⊕ Zτ). Let t = e2πiτ and 〈t〉 = tZ =
{tm|m ∈ Z}. We consider the complex-analytic isomorphism:

C/Λ→ C×/tZ

z 7→ e2πiz

This map sends the points on the usual lattice to circles, one circle with radiuskτ for
all k ∈ N. We can think of the quotient C×/qZ as poking a whole in the middle of a
piece of paper, this being the inside of an annulus, and then rolling up the paper.

1.2. Quotient Models of Elliptic Curves over K. Let K be a field complete wrt
a non-trivial non-archimedian valuation which we denote by | · |, for example, Qp or
Fq((t)).
Question 1. Is the valuation for Fq((t)) the lowest degree?

If we replace C by K, and attempt to write E(K) in the form K/Λ, we run into a
serious problem, there may not be a (non-trivial) discrete subgroup.

Example 1. If Λ ⊂ Qp is any nonzero subgroup, and λ ∈ Λ then pnλ ∈ Λ for all
n ≥ 0, so 0 is an accumulation point of λ. It may happen that tomorrow, when you
wake up, taking three steps returns you close to your starting point, and taking nine
steps returns you even closer.

Example 2. K = Fq((1/t)) is a field complete with respect to the norm |
∑

i≥n ai(1/t)
i| =

q−n. Take the completion of K with respect to the norm. Call it K ′. Then, we pick
an algebraic completion of this K ′, call it C. It is easy to see that Fq[t] is discrete in
C, since, for example, Fq[t] intersects the unit ball only at 0 (since we will only get
(1/t)0 from Fq[T ]. One can prove that the function (our analogue of the exponential)
e(x) = x

∏
a∈Fq [T ](1−x/a) converges everywhere on C. Then fact from non-archimedean

analysis implies that e is surjective, so 0→ Fq[T ]→ C
e−→ C → 0 is exact.

Tate’s observation was that we can use the multiplicative version of the uniformiza-
tion. K× has lots of discrete subgroups, as any t ∈ K× with 0 < |t| < 1 defines a
discrete subgroup tZ = 〈t〉.
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Theorem 3. (Tate’s theorem in 1-dimension) Taking the map in part 1, and substi-
tuting t, defines a surjective “analytic” homomorphism

φ : L× → Et(L)

with kernel 〈t〉 where L is any algebraic extension of K. When L is Galois over K, this
homomorphism is equivariant wrt Gal(L/K).

In other words, L×/tZ ' Et(L). All elliptic curves over K may be modeled as

Et : y2 + xy = x3 + a4(t)x+ a6(t)

for some t. So, picking the value of t completely specifies the curve (as it does in C).
All elliptic curves can not even remotely be modeled this way.

1.3. Where do I live? Making sense of the quotient G×m,K/Λ. We’d like to have
an “analytic object” Ean with underlying set equal to the set of closed points of E
and an isomorphism of “analytic spaces” Ean ' Gan

m,K/t
Z in an appropriate geometric

category.
Using X as a variable, look at the algebra of all Laurent series which are globally

convergent on K×.

O(K×) = {
∑
v∈N

cvX
v; cv ∈ K,

∑
v∈Z

|cv|rv <∞ for all r > 0, r ∈ R}

Viewing O(K×) as the ring of analytic functions on K×, we can construct its field of
fractions M(K×) = FracO(K×). Now we pick t ∈ K× where 0 < |t| < 1.

M q(K×) = {f ∈M(K×); f(tX) = f(X)}
Tate saw that this field was an ELLIPTIC FUNCTION FIELD, the associated elliptic

curve being Et(K).
We use a slightly different approach: we look at all power series converging on the

unit ball Bn,K .

O(Bn,K) = {
∑
v∈N

cvX
v; cv ∈ K, lim

|v|→∞
|cv| = 0}

Remark. Note that we needed a stronger convergence condition (Z rather than N) in
lower dimensions.

In other words, the power series which converge on the closed n-ball. Why power
series on closed balls? Because power series on closed balls admit the Gauss norm (that
is the max). ∣∣∣∣ ∑

v∈Nn

avZ
v
∣∣∣∣ = max

v∈Nn
|av|

And further, this max norm gives the ring O(K×) the structure of a Banach K-
algebra. Maybe thennnn we can QUOTIENT this Banach algebra BY IDEALS. But
this is not enough, this is not a space.

Question 2. Why is algebra not enough?
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But, how can we phrase Gm,K = K× in the language of balls? Well, we can emulate
Gm,K = K[S, T ]/(ST − 1), but we cannot ask the norms to be one, this will just give
us a circle.

K× =
⋃
n≥0

O(Bn,K)/(X1X2 − pn)

Remark. Just as the series f ∈ Tn are viewed as analytic functions on the closed ball
over K, we may view their residue classes in Tn/a as analytic functions on the Zariski
closed subset:

V (a) = {x ∈ Bn(K); g(x) = 0 for all g ∈ a}

Let A = Tn/a. Then let us think of V (a) as being a zero set living in Max(Tn),
which we think of as Max(A) , as we do classically.

add why maximal ideals are natural to use here, what do they represent? Maps
from B → K̂alg

What shall be our definition of open set? We take the definition for finite type maps
between Noetherian affine schemes being open immersions, and change algebras of the
form S/I to algebras of the form Tn/I.

Definition 4. A subset U ⊆ X is an pen subset of X if there is a homomorphism
between K-affinoid algebras φ : A → B with U = φ∗(Max(B)), and for every homo-
morphism ♥ : A → C such that ♥∗(Max(C)) ⊂ U , there is a unique homomorphism
of K-affinoid algebras ? : B → C with ♥ = ? ◦ φ.

We then endow this with the Grothendieck topology. We have thus cleverly restricted
the opens of interest to make our totally disconnected space have the compactness and
connectness properties of schemes dear to us.

Now we have a topology on our Banach K-algebra. It is a real boy now.
That was our goal the whole time! Now we can make sense of the quotient K×/〈t〉,

a true blessing. So, we will give O(K×) a name, Tn.

Question 3. (Grisha) What is the internal logic of this Grothendieck topos?

Question 4. What is the relationships between Riemann surfaces and function fields?
What is the analogue for higher dimensional varieties?

1.4. Which elliptic curves over K can be constructed this way? This is really
a question of what set of questions these tools apply to, we shall see that it applies to
the highly degenerate elliptic curves, and does nothing for “good” ones.

Two equivalent necessary & sufficient conditions:

• Bad reduction (via j-invariant):
However, in the set up above, we pick t ∈ K×, where 0 < |t| < 1. We can also

take |t| > 1, (and replace all by the inverse of t below), we cannot take |t| = 1.
Let us see how far Et(K) will take us.

The j invariant of Et(X) is:
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j =
1

t
(P (t))

where P is a power series over Z. In K, P (t) converges for |t| < 1, so j ∈ K.
Since |t| < 1, then |j| > 1. Since |j| > 1, this means j /∈ R, and thus the
discriminant is not invertible. In other words, it is 0 mod p.
• Bad reduction (via showing we get a singular curve):

In the non-archimedian case, a4(t) and a6(t) both converge, and further, both
a4(t) and a6(t) are in the maximal ideal of the ring of integers,

OK := {z ∈ K; |z| ≤ 1}
m := {z ∈ K; |z| < 1}

This means that when we reduce the curve Et(OK/m), we get

Et : y2 + xy = x3

Question 5. This is apparently singular, but it is smooth.

Question 6. What about p-adic exponential, what does this have to do with Tate curve?

What are the higher dimensional analogues of the Tate theorem?
To characterize the abelian varieties which admit analytic uniformization one needs

three fundamental concepts: Néron models, formal schemes with their “generic fiber”
functor, and the notion of analytic reduction of a rigid-analytic space. We will touch
only on the briefest part of the generic fiber functor, but rest assured we will again find
that only the “degenerate” abelian varieties over K will have models as rigid analytic
K-spaces.

1.5. Generic Fiber Functor. Schemes over a valuation ring R have a generic fiber,
which is a scheme over the field of fractions K = Frac(R).

Grothendieck had the idea that formal schemes (of topologically finite type) over a
complete valuation ring R (of dimension 1) should admit a generic fiber over the field
of fractions K which, in some sense, is obtained by tensoring with K over R.

Thus, there is a functor from

Formal R-Schemes→ Rigid K-Spaces

which associates to a formal R-scheme of topologically finite type its generic fiber as
rigid K-space.

We define τn = limkP/m
kP , where P = R[X1, ..., Xn]. Apparently this is the collec-

tion of power series convergent on the units of R.

Exercise 5. What is τ1? Why does it have this interpretation?

Example 6. To see generic fiber we simply look at K ⊗R τn.
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Question 7. The rational subdomains of affinoid spaces correspond to the notion of
admissible formal blow ups. Apparently, over Spf A, such a blow up is the completion
of a blow up on Spec A, with center in the special fiber. So, we can generalize from the
base field K to quite general objects S ??

Remark. This lecture is based off of the beginnings of [1] and [2].

1.6. On The Motivation of Huber Rings. I emailed Huber in German to ask for
his motivation for f-adic Rings, now called Huber Rings, (es scheint mir vom Himmel
gekommen zu sein, ich würde gerne verstehen, wie Sie es gefunden haben!) and he
kindly replied:

”Der Ausgangspunkt war, daß ich die Grothendieck-Topologie eines rigid analytis-
chen Raums Sp(A) (also A eine klassische affinoide Algebra) und die Strukturgarbe
darauf verstehen wollte. Es war klar, daßhier ein spektraler Raum im Hintergrund
steht. Ich wollte diesen finden und verstehen und möglichst gut beschreiben. Nachdem
mir klar war, daß man diesen topologischen Raum mit Hilfe der stetigen Bewertungen
von A konstruieren kann, fragte ich mich, auf welche weiteren topologischen Ringe sich
diese Konstruktion anwenden läßt. Dabei wurde klar, daß dies zum Beispiel für adische
Ringe mit endlich erzeugtem Definitionsideal möglich ist. Also suchte ich nach einer
Klasse topologischer Ringe, die die klassischen affinoiden Algebren und die adischen
Ringe mit endlich erzeugtem Definitionsideal umfaßt (und auf die sich die Konstruk-
tion des topologischen Raums mit Hilfe stetiger Bewertungen und die Konstruktionder
Strukturgarbe verallgemeinern läßt). Hier ist doch die Klasse der f-adischen Ringe
naheliegend. (Das f in f-adic bezog ich auf finitely generated ideal of definition. Ich
erinnere mich an damals, nur für mich persönlich und auf Deutsch, mir fiel damals auf,
f = fast (=beinahe), die Ringe sind fast adisch).”

My Translation: ”The starting point was my desire to understand the Grothendieck
topology on a rigid analytic space Sp(A) (that is, A is a classical affinoid algebra), and
the structure sheaf over it. It was clear that there was a spectral space standing in
the background. I wanted to find and understand this (space), and if possible, describe
it well. After it became clear to me that one can construct this (space) by means of
continuous valuations on A, I asked myself: to which other topological rings can this
construction be applied? (literally: which further topological rings allow us to apply
this construction). It became clear that this was possible, for example, for adic rings
with a finitely generated ideal of definition. So I looked for a class of topological rings
that included: the classical affinoid algebras and the adic rings with finitely generated
definition ideals (and for which (1) the construction of the topological space by means
of continuous evaluations and (2) the construction of the structure sheaf may both
be generalized). With this in mind, the class of f-adic rings is obvious. (literally: is
reclining nearby) The f in ”f-adic” has two meanings: ”f” as in finitely generated ideal
of definition, and ”f” as in ”fast” (German word for ”almost”). ”

Question 8. Is this the universal such class of rings?
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2. Lecture 2: On Spectral Theory: The Berkovich Topology on A1
Berk

As we talked about last time, we are working with K an algebraically closed field
which is complete wrt a non-trivial non-archimedean absolute value, Qp or Fp((t)).
The topology on K induced by the given absolute value is Hausdorff, but it is also
totally disconnected and not locally compact at all. What a disaster. We led up to and
motivated Tate’s developments as giving satisfactory theory of analytic functions on K,
but it is unclear that these rigid analytic spaces give a nice notion of Laplacian, and
consequently harmonic functions (∆φ) = 0, and consequently subharmonic functions.

The main motivation, according to Yifeng, is that Tate’s rigid analytic spaces did not
behave well with respect to é tale cohomology. Berkovich wanted a model that behaved
well wrt é tale cohomology.

Question 9. example of such misbehaving?

Remark. One motivation is a more honestly geometric alternative to Tate’s category.
He wanted to identify features of the geometry from information about the eigenvalues
of the Laplacian, and to infer the behavior of the eigenvalues of a Riemannian manifold
from knowledge of the geometry. {

δu+ λu = 0

u|∂D = 0

What can we infer about D knowing only the values of λ.
What is a p-adic Laplacian? If we take the philosophy of Berkovich, it will turn out

to be the same as the usual graph laplacian,, let φ : V → R be a function of vertices
taking values in a ring:

(∆φ)(v) =
∑

w:d(v,w)=1

[φ(v)− φ(w)]

We can think of the Laplacian as measuring how much a function differs from its
average (usually sum of second derivatives). We can motivate the discrete laplacian by
the node modeling of a string.

The Berkovich affine line over K is a locally compact, Hausdorff, and PATH- CON-
NECTED topological space which contains K (with the topology given by the given
absolute value as a dense subspace. WOW. They are even better then path-connected,
they are uniquely path connected (any two points are joined by a unique arc).

2.1. Putting a Topology on K by Putting a Topology on the Multiplicative
Semi-Norms of K[T ]. Let’s talk about multiplicative semi-norms on a ring A. These
are functions | · |x : A → R≥0 satisfying the usual properties, except we take out the
requirement that |v|x = 0 only for nonzero v.

Remark. (1) |0|x = 0, |1|x = 1
(2) |fg|x = |f |x · |g|x for all f, g ∈ A
(3) |f + g|x ≤ |f |x + |g|x

Remark. The difference between this and huber rings, is that huber’s adic spaces take
into account valuations of higher rank.
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As a set A1
Berk consists of all multiplicative seminorms on the polynomial k[T ] which

extend the usual absolute value.

Remark. To perk Grisha up, there is a taste of universality. The Berkovich topology is
defined to be the weakest one for which x 7→ |f |x is continuous for every f ∈ k[T ].

Theorem 7. As a set, Max K[T1, .., Tn] ↪→ AnBerk

Proof. (sketch) For simplicity, assume k is algebraically closed. Then Max K[T1, ..., Tn] '
Kn. Given a ∈ Kn, we can associate a multiplicative seminorm | · |a ∈ A1

Berk by setting
|f |a := |f(a)|, where we think of f as a function Kn → K for all f ∈ K[T1, ..., Tn]. �

So, we don’t know all of the points in A1
Berk yet, but at least we know all maximal

ideals are in there. In fact, for C, every multiplicative seminorm on C[T ] which extends
the absolute value of C, is of the form f 7→ |f(z)| for some z ∈ C.

Question 10. I don’t understand why this is true, it uses a theorem called the Gelfand-
Mazur theorem.

This is not at all true for K.
Let’s talk about some other points in A1

Berk. The multiplicative semi-norm we will
use as our guiding path is the ball norm. Take a ∈ K, and r ∈ R≥0. We define the ball
as B(a, r) := {z ∈ K| |z−a|K ≤ r}. We take the ball norm |f |B(a,r) = supz∈B(a,r) |f(z)|.

Question 11. Are these different then the evaluation semi-norm on C?

These ball norms are multiplicative by the Gauss Lemma. Consequently, each of
these ball norms corresponds to a point in A1

Berk.

2.2. Non-Archimedean Balls. It is very important for us to understand how balls
work in the non-archimedean world to understand the Berkovich topology. It will turn
out that the ball norms will be our building blocks for our other norms. Our goal is
to understand why two points | · |B(a,r) and | · |B(a′,r′) are uniquely path connected in
A1
Berk, and what is connecting them.
To get to that goal, we will first prove that

Theorem 8. Any two balls have either empty intersection or are identified.

We can put an equivalence relationship on the points of K: x ∼r y iff |x − y| ≤ r.
We use the non-archimedean-ness: |x− y| = |(x− a) + (a− y)| ≤ max(|x− a|, |y− a|),
so if we assume |x− a| ≤ r and |y − a| ≤ r, we get an equivalence relation.

So, let’s say that B(c1, r1)∩B(c2, r2) have non-trivial intersection, then, there exists
z ∈ B(c1, r1) ∩ B(c2, r2). Then, c1 ∼r1 z and z ∼r2 c2. Let’s say r2 > r1. Then,
c1 ∼r2 z ∼r2 c2. Let y ∈ B(c1, r1), and c1 ∼r1 y. Then, c1 ∼r2 y and y ∼r2 c2. Thus,
y ∈ B(c2, y2).

Thus, they are in the same equivalence class – if one ball contains the other than
there is a totally ordered sequence of balls between them. This is a bit too abstract
however.
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2.3. A Long Example to Help Think About The Balls in Qp. Let us start by
examining balls in Zp. We take the standard tree representation of Zp, where each path
from the center of the tree to a point on the edge represents a string of digits.

How does this digital representation correspond to the usual limit description?

There is a way to represent Zp as a limit where the outer edge of the circle is Zp, and
each radius of length k of the graph is the limit truncated at Z/pk.

We denote x as the truncated x, then, x = y in Z/pk iff d(x, y) < p−k.
So, if we have a, a′ ∈ K, considering them as 0 radius balls, the unique path of

balls between them is as follows(same as more general case with r = 0). If we have
B(a, r), B(a′, r′) ⊂ K, the unique path of balls between them is as follows:
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Remark. WARNING: I messed up the previous 3 drawings but I don’t feel like fixing it
since it doesn’t affect the path description. The following pictures should have valence
4 vertices away from the center.

Now, the path between | · |B(a,r) and | · |B(a′,r′) is the same in A1
Berk. This nice tree

picture is a lie in Qp. In fact, since Qp\Zp ' pZp (this isomorphism takes x 7→ x−1

(flipping the ball of radius > 1 to the ball of radius < 1), we see that Qp is just the Zp
tree with an extra ”limb”, making it an entirely equal valence graph. But – the ball
shrinking and growing argument is the same.

What do your moving options look like as a point in this tree? There is only 1 path
in to the Gauss point (which we will discuss later), and Fp directions going out of any
point.

2.4. Other Norms on K[T ]. We can also make norms out of any decreasing nested
sequence of closed discs, then the map is a multiplicative seminorm on K[T ]:

f 7→ lim
n→∞

|f |B(an,rn)

But why is it not just a ball norm, since the balls have discrete jumps? Because crazy
bullshit exists: we can have a sequence of non-intersecting balls which accumulates to
a point which is NOT in K. This is because K is just complete not “spherically”
complete.

Question 12. What is an example of such a pathological sequence?

Theorem 9. Berkovich then tells us that this is all of the possible multiplicative semi-
norms: Every point x ∈ A1

Berk corresponds to a nested sequence B(a1, r1) ⊇ B(a2, r2) ⊇
... of closed disks. Two nested sequences (a) iff (a) each has a nonempty intersec-
tion, and their intersections are the same, or (b) both have empty intersection, and the
sequences are cofinal.

Truly, there are three options of norms coming from three kinds of nested sequences:

• ∩B(an, rn) = B(a, r)
• ∩B(an, rn) = a ∈ K
• and, ∃ ∩B(an, rn) = ∅

Rephrasing this: there are 4 types of points in A1
Berk according B = ∩B(an, rn).

(1) B is a point of K.
(2) B is a closed disk with radius belonging to |K∗|
(3) B is a closed disk with radius belonging to |K∗|
(4) B = ∅

There is a distinguished point: the Gauss norm. When we have a polynomial
f(T ) =

∑
n anT

n in Q[T ] and a prime p, we define the p-adic Gauss norm to be
|f |p = maxn |an|p. If f(T ) = c is constant, then |f |p = |c|p, so | · |p on Q[T ] restricts to
the p-adic absolute value on Q.

Question 13. How does the Gauss norm correspond to a point in Qp?
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2.5. Onto P 1
Berk. As a set, the Berkovich projective lines P 1

Berk is obtained from A1
Berk

by adding a type 1 point at infinity.

Question 14. What is the point we add at infinity?

Remark. We should also define a sheaf of analytic function A1
Berk and P 1

Berk and view
them as locally ringed spaces endowed with extra structure of a maximal K-affinoid
atlas.

Question 15. What is the sheaf of analytic functions?

This lecture was created with the help of [3] and [4].

3. Lecture 3: The Hodge-Tate Decomposition: an Introduction to
Tools for Thinking about GQ-representations

Well, I have been talking about the basic building blocks of 2 of the 3 p-adic cate-
gories. Grisha talked about adic rings and perfectoid spaces. So, I will move on to an
application of perfectoid spaces.

So, what is this perfectoid stuff all about? One perspective is that it gives us a
language with which we can speak about p-adic Hodge theory. First of all: what is
p-adic Hodge theory? It seems to be the study if GQ representations on p-adic vector
spaces. We get a representation of GQ or GQp via getting an action of GQ on a Qp-vector
space – for example, p-adic cohomology of a variety over Q.

Theorem 10. Let X/C be an algebraic variety that is defined over Q. Then, the
absolute Galois group GQ acts canonically on H i(Xan, Z/n) for any integer n > 0.
Letting n vary through powers of a prime p, we obtain a continuous GQ-action on the
Zp
Remark. Instead of just “adding” open sets to the Zariski topology to refine it, we
consider not only open sets but also some schemes that lie over them. We consider all
φ : U → X which are etale. If X is a smooth variety over C, this means that U is a
disjoint union of smooth varieties, and φ is analytically an isomorphism.

Remark. For more on Galois representations in number theory
https://mathoverflow.net/questions/103846/why-are-galois-representations-so-important-in-number-theory

To understand these objects, one must first understand the action of the local Galois
groups D` ⊂ GQ (decomposition groups = GQ`

?) at a rational prime `. When ` 6= p
(and the variety has good reduction), then these actions are classified by the action
of a single endomorphism (the Frobenius) – and we can use the Weil conjectures to
party in this circumstance. When ` = p, the resulting representations are too rich to
be understood in terms of a single endomorphism. Instead, these representations are
best viewed as “p-adic Hodge structures.”

What justifies this name? Well, we will try to build the result called “Hodge-Tate”
decomposition starting from the usual Hodge decomposition. I should note that Hodge-
Tate decomposition forms the first in a hierarchy of increasingly stronger statements
describing the Galois representations on Hn(XK,ét,Qp) in terms of the geometry of X.
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3.1. Hodge decomposition in C.

Theorem 11. Let M be a compact Kähler manifold. Then, for all k, we have decom-
position of C-spaces:

Hk
sing(M,C) '

⊕
i+j=k

H i(M,Ωj
hol)

Morever, hi,jM = hj,iM as C-vector spaces.

Here, Ωj
hol denotes the sheaf of holomorphic j-forms, and Hk

sing denotes the singular

cohomology. The numbers hi,jM denote dimC H
i(M,Ωj

hol) and are called Hodge numbers
of M . Now, this beastie is proved by pretty analytic methods special to C.

Remark. From this we can derive that for smooth projective integral curves, the alge-
braic and topological genus agree. The above theorem also tells us that the singular
cohomology of the *manifold* Xan should have nothing to do with the sheaf cohomology
on the scheme X, it does!!!

3.2. Toward Hodge decomposition in Qp. What should Hodge decomposition mean
over Qp? Let’s look back at the classical case. Namely, let’s start with a projective,
smooth, integral variety X/Q. Then, let’s write the Hodge decomposition like this:

Theorem 12. (“Theorem”)

Hk
sing(X

an,R)⊗R C '
⊕
i+j=k

H1(X,Ωj
X/Q)⊗Q C

But – when you really think about it, taking the notion of “places” seriously – what
is C but Q∞? So – what happens if we try and replace C with Qp?

If we are going to try to replace C with Qp, what will we do with Xan and Hk
sing?

We could use the rigid analytic analytification – which I alluded to in my first talk.

Remark. We may or may not talk about the process of analytification in this seminar,
depending on time. I’m not sure what would happen if you used Xan, maybe a stronger
related statement?

Even more simple mindedly, we can try replacing Xan with X/Qp, and Hk
sing with

some cohomology that acts like singular cohomology (that is, is a Weil cohomology
theory). The only Weil cohomology on the wikipedia page which takes values in Qp is
p-adic cohomology.

Remark. A Weil cohomology is a cohomology satisfying certain axioms concerning the
interplay of algebraic cycles and cohomology groups.

Remark. (Aside:) If anyone is uncomfortable with p-adic cohomology, we can come
back to it.

Hét(X;Zp) := limnHét(X;Z/pn)

Hét(X;Qp) := Hét(X;Zp)⊗Q
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Étale cohomology works fine for coefficients Z/nZ for n co-prime to p, but gives
unsatisfactory results for non-torsion coefficients

Question 16. Why does it give unsatisfactory results? H2
ét(P

1
C ,Z) = 0 (BUT WHY–

seems like Cech cohomology with cover A1 ∪ A1 but it seems not???), by contrast,
H2
Betti(P

1
C ,Z) = Z as it is S2.

So, when we make the formal replacements

R Qp C Qp Xan  XQp

the Hodge decomposition theorem becomes

Theorem 13. (“Theorem”)

Hk(XQp,Qp
⊗Qp Qp '

⊕
i+j=k

H i(X,ΩX/Q)⊗Q Qp

But we are in the land of Arithmetic, we expect more out of our isomorphisms.
Namely, we don’t expect them to just be isos of vector spaces – rather, they must
respect their god given extra structure. Namely – surprise surprise the GQp actions!

Namely, GQp acts on the left of the above diagonally: g(x⊗ y) = g(x)⊗ g(y), and on

the right hand side, it acts only on the factor Qp. But – it is not GQp equivariant.
Why can there be no such isomorphism of GQp-modules? Well, let’s forget about

tensoring with Qp. Is it possible that there is a GQp isomorphism of the following form?

Hk(XQp
,Qp) '

⊕
i+j=k

H i(X,Ωj
X/Q)⊗Q Qp

Nahhhh. Why? Simply because the left-hand side knows too much, whilst the right
hand side doesn’t! The right hand side is constant as a GQp module. If this isomorphism
was TRUE, then the left-hand side would have the same constant-ness! But, this cannot
be!!!! For example, if X is an abelian variety over Qp, then the left-hand side as a GQp-
module contains the information of whether or not X has good reduction at p. (It is a
so called crystalline representation).

How do we fix this? It seems that if we hope for a GQp module homomorphism, we
must lose information. There is a natural way to do this:

Theorem 14. Let K be a finite extension of Qp, and X/K be a smooth, integral, proper
variety. Then, for all k ≥ 0, we have a decomposition of GK-modules:

Hk(XK ,Qp)⊗Qp Cp '
⊕
i+j=k

H i(X; Ωj
X/Q)⊗Q Cp(−j)

Here, GK, is still acting diagonally on the left, and just on the Cp(−j)-factor on the
right.

There are a few pieces of notation here:

• µp∞ is the pnth roots of unity for all n.
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• What does Cp(r) mean for r an integer? (let alone a rational lol). Well, we
have a p-adic cyclotomic character χp : GK → Z×p defined as the following
composition:

GK → Gal(K(µp∞)/K) ' Z×p
We then denote by K(1) the one-dimensional GK-representation associated

to χp.

Remark. Since the character is the trace of a representation, then, it is the
representation itself when 1-dimensional.

Similarly, we denote by K(r), for all r ∈ N, the representation K(1)⊗r. Fi-
nally, we define K(−r) for r ∈ N , K(1)∨, (the dual representation) with...I
suppose...the dual GK-action.

Then, for any K-linear GK-module V and any r ∈ Z, we denote by V (r)
the GK-module V ⊗K K(r). Note that as a K-vector space, we can identify
V ⊗K K(r) with V , so then the GK action becomes

gx = χp(g)rgx

where gx is the GK action on V we started with.

So on the right-hand side, the only non-trivial GK-action exists on Tate twists, where
it is defined as the tensor product of the GK action on the two pieces. That is, Cp(−j)
is not a linear representation of GK as a Cp-vector space; instead it is semilinear wrt
the standard GK action on Cp.

3.3. Perfection Itself. There are two main steps in the approach

(1) Local study of Hodge cohomology via perfectoid spaces: Construct a pro-étale
cover X∞ → X which is “infinitely ramified in characteristic p”, and study
the cohomology of X∞. (X∞ should be an example of a perfectoid space).
In particular, apparently, X∞ gives no differential forms, so the full Hodge
cohomology comes from the structure sheaf.

(2) Descent: Pull the Hodge cohomology of X∞ down to X. In this step, we see that
the differential forms on X, which vanished after our pullback to X∞, reappear
during our descent.

Remark. The pro-étale site is roughly the cite whose open subsets are roughly of the
form V → U → X where U → X is someétale morphism, and V → U is an inverse
limit of finite étale maps. Then, the local structure of X in the pro-étale topology is
locally perfectoid (this is basically the same as extracting lots of p-power roots of units
in the tower V → U).

We will in fact encounter the pro-étale site next lecture because we will construct
universal covers of p-divisible groups (which are secretly their pro-étale covers).

Remark. The universal pro-etale cover is constructed like a usual universal cover: that is,
it just has to satisfy the the universal property of a universal covering space (of covering
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maps factoring). Thanks to Jora for finding out why universal pro-etale covers exist, it is
due to Lemma 7.18 in the paper on diamonds (https://arxiv.org/pdf/1709.07343.pdf).

I said here that next time we would talk about the proof of the abelian schemes case
of the Hodge-Tate decomposition. However, instead I read a cool paper of Scholze and
talked about that instead because p-divisible groups ESPECIALLY over nonfinite fields
are my absolute weakness.

This was loosely based on [6] and [5].
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4. Lecture 4: p-adic Analogue of Riemann’s classification of Complex
Abelian Varieties

First, I want to dissuade Jora of his feelings on étale cohomology of rigid-analytic
varieties.

Theorem 15. Let C be a completely algebraically closed extension of Qp, let X/C be a
proper smooth rigid-analytic variety, let L be a Fp-local system on Xet. Then, H i(Xet, L)
is a finite dimensional Fp-vector space for all i ≥ 0, which vanishes for i > 2 dimX.

The properness assumption is crucial here. However, using resolution of singularities,
we can deduce the result for proper rigid-analytic varieties by resolution of singularities.

Let’s talk about a result of Weinstein-Scholze on classifying p-divisible groups over
OC , where C is an algebraically closed complete extension of Qp. We don’t really need
perfectoid stuff here. (Page 29 of [9]).

Why should we care? Well the weak Tate conjecture says (for a number field K):
Abelian Varieties of dimension g over K → Galois Representations GK → GL2g(Qp)

has fibers consisting of isogeny classes.
Since Abelian varietyies are classified up to isogeny by their p-divisible group over K

this is a GREAT motivation for understanding the classification of p-divisible groups
over K!

4.1. The Classical Setting.

Theorem 16. The category of complex tori is equivalent to the category of pairs t,Λ,
where t is a finite dimensional C-vector space, and Λ ⊂ t is a lattice.

This classification can be reformulated in terms of Hodge Structures.

Definition 17. • A Z-Hodge structure of weight -1 is a finite free Z-module Λ
together with a C-subvectorspace V ⊂ Λ⊗Z C, such that V ⊕ V ∗ ' Λ⊗Z C.
• A polarization on a Z-Hodge structure (Λ, V ) of weight −1 is an alternating

form
φ : Λ⊗ Λ→ 2πiZ

such that φ(x,Cy) is a symmetric positive definite form on Λ⊗Z R, where C is
Weil’s operator on Λ⊗Z C ' V ⊕ V ∗, acting as i on V and as −i on V ∗.

So, it follows that complex tori are equivalent to Z-Hodge structure of weight −1,
mapping (t,Λ) to (Λ, V ), with V = ker(Λ⊗ C→ t).

Theorem 18. The category of complex abelian varieties is equivalent to the category
of polarizable Z-Hodge Structures of weight −1.

This theorem, stating an abstract equivalence between some geometric objects (abelian
varieties) with some Hodge-theoretic data, the “Hodge Theoretic perspective”.

In the case over C, this equivalence has a very geometric meaning – all complex
tori of dimension g have the same universal cover Cg, and thus are of the form Cg/Λ
for a lattice Λ ⊂ Cg. When can one form the quotient Cg/Λ? Always as a complex
manifold, sometimes, as determined by Riemann, as an algebraic variety. We call this
the ‘‘geometric perspective”
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4.2. p-adic analogue: The Hodge perspective. Now, let C be an algebraically
closed complete extension of Qp. Let X/C be a proper smooth scheme. (The following
is true more generally for X/C a propert smooth rigid-analytic variety for which the
Hodge-Tate spectral sequence degenerates.

If I felt I could communicate this without boring you to tears, I would start by telling
you about The Hodge Tate Sequence for Abelian Varieties and p-divisible groups. But,
I fear it is fairly technical. So, let me first motivate why we like it. This sequence gives
us a functor from p-divisible groups over OC to pairs (Λ,W ), where Λ is a finite free
Zp-module, and W ⊂ Λ⊗Zp C is a C-subvectorspace.

Theorem 19. This functor is an equivalence of categories.

Sorry Grisha, here I will only tell you the functor, not why it is an equivalence of
categories.

4.3. What is this functor? Let C be an algebraically closed complete extension of
Qp.

We will take the example of p-divisible groups coming from abelian varieties to guide
our way. This will show us what the functor is in all cases.

We will need to introduce the Hodge Tate and Hodge deRham spectral sequences.
(see pg. 26 of [9])

These will give us two very important short exact sequences.
Let A/C be an abelian variety, with universal vector extension EA→ A, and p-adic

Tate module Λ. Lie EA is apparently dual to H1
dR(A), and Λ is dual to H1

ét(A,Zp).

Definition 20. What is dual abelian variety: we think of it as the connected component
of the Picard scheme (the group of isomorphism classes of invertible sheaves (or line
bundles) on X, with the group operation being tensor product)

Definition 21. Let A be an abelian variety over k. The universal vector extension of
A is an extension EA of A by a vector group V , such that for each vector extension E
of A there exist unique morphisms of algebraic groups f and F making the following
diagram commute:

This says that E is the pushout of EA by f : V0 → V .

0 V0 EA A 0

0 V E A 0

f F

Remark. Thanks to Jora for hunting down the defition of the universal vector extension
EA: [http://www.martinorr.name/blog/2014/05/09/universal-vector-extensions/]

We get two short exact sequences, where A∗ is the dual abelian variety.

0→ (LieA∗)∗ → LieEA→ LieA→ 0

0→ (LieA)(1)→ Λ⊗Zp C → (LieA∗)∗
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Oh, the second sequence is a little suggestive as a place to look for W don’t you think?
We must go deeper.

When we assume that A has good reduction, that is, A/OC is also an abelian variety,
where OC is the ring of integers. Then, we can describe everything in terms of the
p-divisible group G = A[p∞]. Indeed, we have the universal vector extension EG→ G,
and the p-adic Tate module Λ of G. We have the short exact sequence of finite free OC
modules.

0→ (LieG∗)∗ → LieEG→ LieG→ 0

Definition 22. (Cartier dual of p-divisible group) Let G = Spec A be a finite group
over R, and m : A⊗ A→ A define mult in A, and µ : A→ A⊗ A the group law. Let
A′ = HomR−mod(A,R). Then, we get:

mu′ : A′ ⊗ A′ → A, m′ : A′ → A′ ⊗ A′

µ′ defines an algebra structure on A′ and m′ defined a product on G′ = Spec(A′).
We call G′ the cartier dual. But in this lecture we use the notation G∗.

Theorem 23. (Fargues) There is a complex of finite free OC-modules,

0→ (LieG)(1)
α∗
G∗ (1)
−−−−→→ Λ⊗Zp OC

αG−→→ (LieG∗)∗ → 0

Its cohomology groups are killed by p1/(p−1)

what does this mean, why is this killing important

This map αG is constructed as follows: it matters because W will come from it’s
kernel!!! (see remark 4.14 pg 28 of [9])

HERE IS THE ALL IMPORTANT PROPOSITION. We already pretty much knew
that the lattice Λ would be our friend the Tate module, but what the hell is W going to
be? Well, we have two sequences. One we got from the Hodge-Tate-deRham spectral
sequence, the second we get from Fargues’s theorem.

Theorem 24. Let A/OC be an abelian variety, with Tate module Λ, and G = A[p∞].

0→ LieA∗ ⊗OC
C → H1

ét(AC ,Zp)⊗Zp C → (LieA)∗ ⊗OC
C(−1)→ 0

0→ LieG⊗OC
C(1)→ Λ⊗Zp C → (LieG∗)∗ ⊗OC

C → 0

are dual to each other.

Remark. Remember, we can associate a Tate module (at p) to a p-divisible group – we
can associate one to any damn group we please. Just take the limit as usual Tp(G) :=
limG[pn] where the maps are given by the multiplication by p-map A[pn+1]→ A[pn]

Remark. To be extremely precise about the definition of p-divisible groups, we are
including {f ∈ O(T ) : fp

n
= 1} into {f ∈ O(T ) : fp

n+1
= 1}

Question 17. What does Scholze mean by σ-linear algebra? (in the context of Deudonne
Theory). He means our maps aren’t linear – they have a factor σ – the lift of the
Frobenius on W (K)→ W (K).
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Let K be the residue field of OC . Then, by reduction to the special fibre, one has a
functor from p-divisible groups over OC to p-divisible groups over K. Recall that the
latter are classified by Dieudonne modules (M,F, V ), where M is a finite free W (K)-
module, F : M → M is a σ-linear map, and V : M → M is a sigma−1-linear map,
such that FV = V F = p.

So...now we have a functor from (Λ,W ) to (M,F, V ). Describing this functor amounts
to an integral comparison between the etale and crystalline cohomology of p-divisible
groups. WE WILL REVISIT THIS at the end of the talk because it is AWESOME.

Let K be a discretely valued complete extension of Qp, with perfect residue field.
Then, HERE IS OUR FABULOUS HODGE CLASSIFICATION:

Theorem 25. The category of p-divisible groups of OK is equivalent to the category of
lattices in crystalline representations of Gal(K/K) with Hodge-Tate weights 0, 1.

Question 18. I think by crystalline representation we mean here Hk(XQp
,Qp)

4.4. p-adic analogue: The Geometric perspective. So, in this section, we learn for
which Zp-modules Λ, we may quotient a p-divisible group by to get another p-divisible
group.

Question 19. How can we think about a p-divisible group as an fpqc sheaf on schemes
over R. We appear to need this to define the universal cover of G as G̃ = lim×pG. We

end up with ker(G̃→ G) as a sheafified version of the Tate module.

This functor turns G 7→ G̃ isogenies into isomorphisms.

Question 20. Apparently the generic fiber of G̃ is perfectoid, but I still don’t understand
how being perfectoid helps at all with computation. Should I ask MO for examples?

Theorem 26. Let G be a p-divisible group over OC. Then there is a p-divisible group
unique up to isogeny H/F p, and a “quasi-isogeny”

ρ : G⊗OC
OC/p→ H ⊗F p

OC/p
Definition 27. Sheaves on the site of infinitesimal exntesions of open sets of X. Sheaces
on this site grow – they can be extended from open sets to infinitesimal extensions of
open sets. A crystal on this site Inf(X/S) is a sheaf of OX/S-modules which is rigid –
any map f between objects T and T’ of Inf(X/S) has the natural map f ∗F (T )→ F (T ′)
be an iso.

So, in particular, we find that G̃ ' H̃OC
. For any p divisible group G over OC , we

have the Zp lattice TG(OC =: Λ. Then, Λ ⊂ G̃(OC). We get a fully faithful functor

from (G, ρ), where ρ is as before, to the category of Zp-lattices Λ ⊂ H̃(OC) Here, we

use ρ to identify G̃ and H̃.
Thus, as in the case over C, we can ask for which Zp lattices Λ ⊂ H̃(OC) one can

form the quotient H̃/Λ to get a p-divisible group.

Theorem 28. The category of pairs (G, ρ) is equivalent to the category of Zp-lattices
Λ ⊂ H(OC such that the cokernel V = coker(Λ⊗ C →M(H)⊗ C) is of dimension d,
and the sequence

0→ Λ[p−1]→ H(OC)→ V → 0
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is exact

Remark. This map H̃(OC) → M(H) ⊗ C is the quasi logarithm, where M(H) is the
covariant Dieudonne module.

Remark. This quasilogarithm is defined using the usual logarithm of p-divisible groups,
logG : G(OC) → LieG ⊗ C. To define the quasilogarithm properly we have to use
classical Grothendieck-Messing theory – which relates deformations of p-divisible groups
to lifts of the Hodge filtration (if the ideal defining the nilpotent immersion is equipped
with a PD-structure).

Question 21. Thus we get a functor from p-divisible groups over K to p-divisible groups
over OK , and thus from (Λ,W ) to (M,V, F )? What is this functor?

Question 22. Does prismatic cohomology give a functor description between (Λ,W )
and (M,V, F )? Maybe this is related to the Bellinson Fontaine conjecture?

Remark. We can think of having a mixed Hodge structure as being an action of Frobe-
nius. The category of all mixed Hodge structures is Tannakian, that is, it is the
representation category of some algebraic group. This algebraic group is called the
Hodge-Galois group.

This lecture was based on [9].

5. Lecture 5: For The Love of Projective Space: Is Tilting Right?
(What We Need for The Proof of the Monodromy Weight

Conjecture)

In approaching the subject of p-adic geometry, due to its vastness, there are a few
approaches. First to build a language or a foundation which is the “right one”. To
Grisha, this means the most universal definition which captures exactly the properties
needed. To me, the “right definition” or “right conceptual landscape” is found by
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testing that one’s definition has the properties you desire. Preferably, it can also be
directly spoken to.

So, let’s play. In the first two lectures we discussed A1 in two adic categories. Now,
we will discuss P 1.

Remark. This whole talk is based on [13], and I didn’t type out most of my lecture
here, so if you find these notes lacking, be sure to check those out. Further, feel free to
skip this lecture and go straight to Lecture 7 if you are willing to take the properties
of projective spaces on faith.

5.1. Is Tilting “Right”? How do P n
K and P n

K[ talk to each other? In all appli-
cations of perfectoid spaces, the hard part is to find a way to pass from objects of finite
type over K to perfectoid objects. This is not possible in a canonical way, and one has
to make a choice.

A perfectoid space is an adic space over K which is locally isomorphic to an affinoid
perfectoid space, and the morphisms are morphisms of adic spaces.

Theorem 29.
(P n

K)perf tilts to (P n
K[)

perf

(P n
K)perf ∼ lim

φ
Xad
K

Where φ is defined on coordinates by [x0 : · · · : xn] 7→ [xp0 : · · · : xpn]
There is a homeomorphism of both topological spaces, and more generally, etale topoi:

(Xad
K[)
∼
ét ' lim

φ
(Xad

K )∼ét

If we take U ⊆ |(P n
K)|, we have a commutative diagram of etale topoi:

We did the proofs in the lecture on the fly just checking affine pieces, if you want to
see more details, look at [13].

Remark. We will often build perfectoid spaces X/K from a filtered inverse system of
Noetherian adic spaces

φi : X → Xi

We call them similar (we don’t say equivalent because limits sometimes don’t exist in
adic spaces so yikies):

lim
φ
Xi ∼ X
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if the following two conditions are satisfied:

(1) The maps on topological spaces |X| → |Xi| induce a homeomorphism |X| '
lim |Xi|

(2) For any point x ∈ X, let xi be the image in Xi, then we get maps k(xi)→ k(x)
on the residue field. We require that the induced map lim k(xi) → k(x) has
dense image.

Remark. Note that k(x) is used to denote, I believe, coker : |k|x → R, since each point
in adic space is a valuation.

That is, the categories of presheaves on the ”spaces” (where the topology is the etale
topology) are equivalent.

Okay, what do all of these comparisons give us? Who cares?

Theorem 30. Corollary:

H i((P 1
K)adét ;Z/pn) ' H i((P 1

K[)
ad
ét ;Z/pn)

We must naturally ask, for what other adic spaces other than P n does this theorem
still hold, unchanged? Toric varieties, but we will not talk about them here, that is a
whole ’nother talk.

5.2. Pulling Back. Try pulling back along these comparison theorems – everything
BREAKS and is SO not a variety any more. Even just the example x0 + x1 = 0
becomes the infinite collection {xp

n

0 + xp
n

1 } for all natural numbers n. That is quite
NON algebraic!

So, we need to approximate here.
“geometrically connected proper smooth, set theoretic complete intersection with

toric variety”

Remark. why do we need each of these conditions: the second condition comes from
the proof of the approximation lemma

This lecture was largely based around [10] and [13]. Next lecture on the statement
on the conjecture.

6. Lecture 6: Explaining the Weight-Mondodromy Conjecture

The monodromy weight conjecture is one of the main remaining open problems on
Galois representations. It implies that the local Galois action on the `-adic cohomology
of a proper smooth variety is almost completely determined by the traces.

So, we will be looking at two different filtrations on H∗ét(XK̄ ;Q`). They will come
from the following exact sequence:

IK → GK → GFp

The monodromy filtration will come from IK , which is the analogue of the first
fundamental group in K.

The weight filtration will come from the weights of the eigenvalues of the geometric
Frobenius on GFp

.
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6.1. Universal Properties of Both Filtrations.

Lemma 31. (Simplified) Monodromy Filtration Given a finite dimensional vector space
V with a nilpotent endomorphism N , there exists a unique increasing filtration M• such
that

(1) NMi ⊂Mi−2

(2) N r : GrMr V ' GrM−rV .

Lemma 32. Monodromy Filtration Given a finite dimensional vector space V with a
nilpotent endomorphism N : V (1) → V , there exists a unique increasing filtration M•
such that

(1) M−kV = 0 and MkV = V for sufficiently large k
(2) N(MkV (1)) ⊂Mk−1V for all k
(3) Nk : GrMk V (k) ' GrM−kV

I want to emphasize here that this is pure linear algebra, when N2 = 0 the filtration
is simply M−1 = im(N), M0 = ker(N), M1 = V .

Lemma 33. Weight Filtration The unique increasing filtration such that
W−kV = 0 and WkV = 0 for sufficiently large k
the action of IK on GrWk factors throat a finite quotient
after replacing K by a finite extension Gal(F sep/F ) acts on GrWk V and this action has
weight k.

We will discuss the existence of such filtrations later.

6.2. Monodromy in C. I simply use the first page of this for both Monodromy sec-
tions: [15]

6.3. Monodromy in K. Let S be a Henselian DVR. Let K be Frac(S), let k be
its residue field of characteristic p. Let K be its algebraic closure. Let H be a finite
dimensional vector space over Q`, ` 6= p on which GK acts continuously.

Due to a theorem of Grothendieck,

I` := lim
n
IK/`

nIK

is canonically isomorphic to Z`(1).
C K
D Spec(S)
D∗ Spec (K)

universal cover D̃∗ of D∗ Spec(K)
π1(D∗) IK
π(D

∗) = Z ' Z(1) I` = Z`(1).
X X → Spec(S) projective scheme
X∗ = f−1(D∗) XK

X̃ := X ×D D̃∗ XK

H i(X̃;Z`) H i(XK ,Z`)
Thanks to Jora for discussing the local system piece with me, here is the original

table of [16]. So on the left you have something over a punctured disk, and on the
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right you think of X/K as if it were a generic fiber of the integral model of X (that is,
thinking of the special fiber as a “punctured disk”). You can prove theorems about the
Galois action on cohomology similar to the ones from the usual monodromy theory.

The pro-étale part of IK has one generator (more on this next lecture), just like
π(D∗).

6.4. Theorem that Logarithm of Monodromy is Nilpotent (The Monodromy
Filtration).

6.5. Weight Spectral Sequence C. We start with a smooth quasi-projective complex
variety U .

Thanks to Hironaka’s resolution of singularities results, there exists a good “com-
pactification” for any U , that is, an open embedding U ⊂ X into a smooth projective
variety such that Y := X − U is a normal crossings divisor.

This is a formal sum of codimension d varieties, where etale locally, our intersection
is transverse. More formally, we have smooth (projective) components Y1, .., YN such
that each p-fold intersection of components Yi1 ∩ ...∩Yip is smooth of pure codimension
p (where 1 ≤ i1 < ... < ip ≤ N).

Let Y [q] be the disjoint union of all q-fold intersections of the Yi, more formally:

Y [q] :=
∐

i1<...<iq

Yi1 ∩ ... ∩ Yiq

This gives us a combinatorial spectral sequence:

Ep,q
2 = Hp(Y [q],Q(−q)⇔ Hp+q(U,Q)

Remark. Q(−q) is the tate twist Q(2πi), that is, ker(exp : C→ C∗).

We get the filtration which we use to build the spectral sequence from a filtration on
the sheaf, by taking a sheaf on X − U and pushing it onto U?

Our spectral sequence collpases at E3. The differentials dp,qr vanish for r ≥ 3.

dp,qr : Ep,q
2 → Ep+r,q−r+1

Hp(Y [q],Q(−q)→ Hp+r(Y [q−r+1],Q(−q + r − 1))

The left hand side is of weight p− 2q, and the right hand side is of weight p+ r+ 2q−
2r + 2 = p+ 2q − r + 2.

Note the latter is not equal to the former when r ≥ 3. Therefore, we can apply the
following lemma:
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Lemma 34. If V and W are Hodge structures of weights n 6= m, then every morphism
φ : V → W of Hodge structures is trivial.

A remarkable consequence is that the E3 = E∞ term does not depend on the choice
of compactification.

This section used [17]

6.6. Weight Spectral Sequence K. Let K be a fraction field of a Henselian DVR
S.

Here is our translation table for this section:
C K
U generic fiber X ⊗OK

K
X − U =: Y special fiber X ⊗OK

F
Y [q] X(k)

Weights in characteristic p are much more intuitive. These are just coming from the
eigenvalues of Frobenius. We will talk about this next lecture.

[16]

Remark. Keywords for the curious: Steenbrink on Mixed Hodge Structures & Formal
Steenbrink Spectral Sequence

6.7. Statement of the Conjecture.

Mi = Wi+n

That is, the filtrations are equal up to a shift. We will discuss this shift in the next
lecture.

6.8. Equivalence of the Conjecture to a Statement in Terms of Spectral Se-
quence. See Prop 2.5 and Remark 2.6 in [14]

Conjecture 35. The monodromy operator N r : E−r,w+r
2 ' Er,w−r

2 for all r, w.

The Weil conjectures can be thought of as: Let X/Zp be a proper smooth curve.

H∗ét(X ⊗Zp Fp,Q`) ' H∗ét(X ⊗Zp Qp,Q`)

There is an action of Gal(Fp/Fp) on the left, and of Gal(Qp/Qp) on the right. This
iso is equivariant with respect to these.

The Monodromy-Weight Conjecture can be thought of as: Let X/Zp be a sss. (more
general).

Then, we can look at the reduction of X/Fp, this looks like a bunch of intersecting

lines. Each of these lines corresponds to: H∗ét(X ⊗Zp Fp,Q`). These lines being glued
together gives us the differentials in our spectral sequence which collapses at the second
page to be: H∗ét(X ⊗Zp Qp,Q`).

So, we have a map:

H∗ét(X ⊗Zp Fp,Q`)→ H∗ét(X ⊗Zp Qp,Q`)

which again respects the Galois action.
Note that the Weil conjectures are the special case for proper smooth varieties, when

the monodromy action is trivial and the weight is automagically pure.
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7. Lecture 7: On the Weight Filtration and Scholze’s Proof for
Hypersurfaces

7.1. On the Notion of Weight.

Z(V/Fq;T ) =
P1(T ) · · ·P2N−1(T )

P0(T )P2(T ) · · ·P2N(T )

where Pi(T ) ∈ Z[T ] with

P0(T ) = 1− T P2N(T ) = 1− qNT

and such that for every 0 ≤ i ≤ 2N , the polynomial Pi(T ) factors over C as

Pi(T ) =

ki∏
j=1

(1− αijT ) with |αij| = q1/2

here, k is often called the ith Betti number of V .
The generalization of weight is fairly natural. Again, we have X a smooth variety

over Fq, and H = H1(XFq
;Q`). Then, the weight of an eigenvalue α of Frobenius is

i if |α| = qi/2. Thus, one formulation of the weight monodromy conjecture is that all
eigenvalues α of φ acting on grMj H

i are such that |α| = q(i+j)/2.

7.2. Intro to Mixed Hodge Structures. The direct sum decomposition Hm =
⊕p+q=mHp,q such that Hp,q = Hq,p is a pure hodge structure of weight m.

The Hodge filtration

Hm = F 0 ⊃ F 1 ⊃ · · · ⊃ Fm ⊃ Fm+1 = 0

F p = Hp,m−p ⊕Hp+1,m−p−1 ⊕ · · · ⊕Hm,0

So F p means at least p dz’s. The spaces Hp,q can be recovered Hp,q = F p ∩ F q.
Let’s sat that X is a projective variety which is not necessarily smooth, or more

grenerally, a quasi-projective variety (the difference of two such varieties). Deligne then
tells us what the (p, q) type of a cohomology class should be. Let X be a quasi-projective
variety. For each m, there is an increasing weight filtration

0 ⊂ W−1 ⊂ W0 ⊂ · · · ⊂ W2m = Hm(X)

such that gr` = W`/W`−1 for each ` has a pure Hodge structure of weight `. In other
words, gr` looks like the `th cohomology group of a smooth projective variety. [18]

7.3. Restating the MW-Conjecture. Let V n := Hn(XK ;Q`). Let grMi V = MiV/Mi−1V .

Conjecture 36.

grMi V
n = Wn+i
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7.4. Deligne’s Theorem.

Theorem 37. Let X be a curve, let (K be a finite field), R := ˆOX,x, k = Frac(K). We
look also at k(X) ⊂ k. Then, if the variety is defined over k(X), the monodromy weight
conjecture holds! The general case is for varieties defined over k, and not necessarily
k(X)

We fall further from God’s grace everyday, from K to K to K(ω1/p∞)∧.

Remark. Note that Deligne here uses a replacement by a global field K, and Scholze
uses a replacement by k(ω1/pn)∨. Why does moving from k to k(ω1/p∞) =: K not affect
the etale cohomology? It does not affect the Galois action by GQp and it does not affect

the maximal pro-` quotient of the inertia group (looking at ω1/`n where ` 6= p) which
is used in the monodromy filtration (see [9] pg 47 section 9 paragraph 1)

7.5. Scholze’s proof. You’ll recall that we discussed two lectures ago
Beautiful facts, that for any U ⊂ P n

K , we have a commutative diagram of
Etale topoi:

Moreover, also discussed the sharp map:

Adic world:

H∗(Xét;Q`) ' H∗(Xad
ét ;Q`)
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Doing the appropriate replacements:

What is happening here, well, approximately (next to the above diagram):

Dimension of Z is equal to the dimension of Y . Let Z be a smooth proper
Variety contained in π−1(U). The above diagram is equivariant wrt the canonical
Galois action of GK = GK[ on this diagram such that all morphisms are G-equivariant.

So we get the G-equivariant map

H i(YCp,ét;Q`)→ H i(ZC[ ;Q`)

Theorem 38. Iso for i = 2 dimY

Proof. Here, H i(X) denotes H i(X;Q`)
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If H2k(X) → H2k(Z) is not an isomorphism, it is the zero map, since this is a map
on the cohomology of the top dimension.

This being the zero map implies that the restriction map H2k(P n
K[)→ H2k(Z) is zero.

But this cannot be. The kth power of the first chern class of the ample line bundle on
P n will have nonzero image in H2k(M).

Remark. The cohomology groups of P n are generated by the class H of a hyperplane.
If f : X → P n is our embedding then by definition f ∗H = A, an ample class. So,
f ∗Hk = Ak must be nonzero.

�

From this, may deduce the MW-theorem.

Proof. Now, the Poincare duality pairing implies that H i(Z) ' H i(Y )⊕ (otherjunk).

Remark. The poincare duality pairing is a map:

H2k−i(Y )⊕H i(Y ) H2k(Y )

H2k−i(Z)⊕H i(Z) H2k(Z)

µY

f×f =

µZ

Since the pairing is nondegenerate, H i(Y )
f−→ H i(Z), if ker(f) 6= 0, then im(f) ⊕

coker(f) ' H i(Z).
This is usually for homology, but we have rational coefficients so they are literally

vector space dual.

By Deligne’s theorem, H i(Z) satisfies the MW-conjecture, and thus, so does its direct
summand H i(Y ). �

Question 23. How limiting is considering only toric varieties?

This lecture is primarily based on the last bitty bits of [9].

8. Lecture 8: THE LAST LECTURE: On Dessin D’Enfant

This lecture was inspired by the series [19] and [20].
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8.1. On Maps. Example of Monsieur Matthieu, map more general than dessin, make
any map into a dessin.

8.2. Method of Labelling: Cartographic Groups. Take the orientation imposed
by the surface, start at a point and go around labelling what you see.

(open up a copy of sage)

K = PermutationGroup ( [ ’ ( 1 , 2 ) ( 3 , 4 ) ’ , ’ ( 1 , 3 ) ( 2 , 4 ) ’ ] )
K. order ( )

Equivalent maps give the same cartographic group: (example of Matthieu group).
Define Matthieu group.

8.3. Proof of Belyi’s Theorem. We can decompose this into two steps, first, given
any X over Q,

8.4. Grothendieck-Teichmüller Group. We take the fundamental groupoid wrt the
points which are maximally degenerate on Mg,n (this is the moduli stack where we look
at marked points with nontrivial tangent vector). Call this groupoid Tg,n. The maps
from Mg,n−1 ← Mg,n → Mg,n+1 are forgetting and remembering points respectively.
The maps between different genuses are cutting and gluing maps.

There is another type of important morphism between the (orbifold) fun-
damental groups of the moduli spaces Mg,ν →Mg′,ν′ that is considered in
Grothendieck’s tower. You can see this morphism in three different ways.
One is directly on the surfaces of type (g, ν) and (g′, ν ′) (of genus g with
ν boundary components, resp. genus g′ with ν ′ boundary components).
This morphism exists if you can put a set of disjoint simple closed loops
on the surface of type (g′, ν ′) such that when you cut along them, you
cut your surface into one piece of type (g, ν), or else into several pieces
of which at least one is of type (g, ν). You can also think of including
the smaller surface of type (g, ν) into the bigger one by gluing it to other
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smaller pieces along the edges of their boundary components, to form the
bigger one of type (g′, ν ′) (which is the image Grothendieck had in mind
when he talked about Lego).

The second way to see this morphism is as a morphism of moduli spaces,
where Mg,ν is mapped to a boundary component of the Deligne-Mumford
compactification M g′,ν , in fact precisely the boundary component corre-
sponding to taking the simple closed loops on the surface of type (g′, ν ′)
that ”cut out” the one of type (g, ν) and shrinking them to length zero,
so they become nodes.

The third way to view this same morphism is on the fundamental
groups. This is pretty easy, since the (orbifold) fundamental group of
Mg,ν is generated by Dehn twists along simple closed loops on the surface
of type (g, ν), and these just map to the Dehn twists along the same
simple closed loops when the (g, ν) surface is included in the (g′, ν ′) one
as above.

The Teichmller tower can be considered to be the collection of all
the fundamental groups of the Mg,ν linked by the point-erasing mor-
phisms and by these. Or, as Grothendieck wanted, instead of funda-
mental groups, that depend on a certain choice of base point, you can
replace the groups by more symmetric fundamental groupoids based at
all ”tangential base points” on the moduli spaces”.

The automorphism group of the Teichmller tower basically then con-
sists of tuples (φg,ν) such that each φg,ν is an automorphism of π1(Mg,ν)
and the different φg,ν in the same tuple commute with the homomor-
phisms of the tower.

– Schneps

Question 24. Why do we take it’s profinite completion?

Thanks to Jora for asking me followup questions on this, and thanks to Nick Rosen-
blyum for conversing with me on the following (results of Fresse):

the GrothendieckTeichmüller group, as defined by Drinfeld in quantum
group theory, has a topological interpretation as a group of homotopy
automorphisms associated to the little 2-disc operad

We may look at the GT group as Aut(∪n∈NM0,n), thinking of M0,n as a 2-disk operad.
Note that M0,n is homotopy equivalent to the collection of n − 1 little disks in the

plane.
We may look at M0,n →M0,k as a composition of little disks, where we are gluing in

the puncture at infinity to the original.
M0,n ×M0,m →Mg,k, g + k ' n+m.

Question 25. I don’t understand the reduction from a point in Mg,n to M0,k?

8.5. Relation of GQ and GT . There are some constraints on the image of GQ in
GT , but the image is not yet understood. It is known that GQ ⊂ GT . Grothendieck
conjectures that GT ' GQ.
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8.6. Examples of Dessin D’Enfant in Nature. What’s the dessin associated to
y3 = x4−1? One of my favorite curves. It is a cylic 12-fold cover of the sphere ramified
at 3 points (show why and the correponding tesselation).

9. The Talk Never Given: On the Nature of Good and Bad:
Neron-Ogg-Shaferevich
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