
THE FROBENIUS EIGENVALUES OF ARTIN-SCHREIER-WITT
CURVES ARE GAUSS SUMS

CATHERINE RAY

Abstract. We may geometrically diagonalize Frobenius to compute it’s trace in or-
der to generalize the Davenport-Hasse theorem and show that eigenvalues of Frobenius
of Artin-Schrier-Witt covers are also Gauss sums. We propose this as a method of
recovering the slopes of their Jacobians.

1. (Brief) Background

I’ve felt for a long time that automorphisms of curves should control or at least exert
serious force on the slopes on their Jacobians. This playful note is toward exploring
this force, and outlining a possible method of exploiting it.

Correspondences on X are endomorphisms of X. Given Y ⊆ X ×X, the associated
correspondence gives an endomorphism of X via p2(p

−1
1 (X)), if the divisor Y we pick

doesn’t have weird zeros (so that it doesn’t just erase all of X).

Y

X ×X

X X

p1 p2

Given a map X
∆−→ X ×X, take the Frobenius map:

X
F−→ X ×X

∆X ∩ FX = #X(Fp)

If Y ≃ FX is linearly equivalent, then,

#(Y ∩∆X) = #X(Fq).

Inspired by the beautiful proof of the Lefschetz fixed point theorem via correspon-
dences. My hope is to show that for totally wildly ramified Z/pk covers the p-divisible
groups of their Jacobians always have a slope 1/pk − pk−1.

Date: Friday 23rd May, 2025.
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2. Reproof of Davenport-Hasse Geometrically Diagonalizing

Let k be a field of characteristic p, such thatK ⊇ Fq. We begin with an Artin-Schreier
curve A with affine equation

yp − y = xp−1

Remark. Coleman considers the more general case of yp−y = xp
f−1, we do not consider

pf here (yet!), as the x terms of the divisor gP are more complicated for the pf case
and I’m just trying to do a sanity check.

Consider the following homomorphisms:

ψ : Fq → Aut(A)

a 7→ ψ(a)(x, y, z) = (x, y + a)

χ : F×
q → Aut(A)

b 7→ χ(b)(x, y, z) = (b(q−1)/mx, y)

Definition 2.1. We consider the multiplication to be within the group structure of
Aut(A), and the addition to be the addition of cycles.

We then define the following automorphism,

G := −
∑
b∈Fq

χ(b)ψ(b),

and consider its associated correspondence G.

We also conflate the notation to also call the divisors associated to these correspon-
dences by the same name.

Here is an excellent source on additive and multiplicative characters to get a feel
for them if they are new friends for you. https://kconrad.math.uconn.edu/blurbs/
gradnumthy/Gauss-Jacobi-sums.pdf

Theorem 2.2. (1) Under equivalence of correspondences, ϕ = G.

Proof. We will construct a principal divisor (gP ) ∈ Div(A) and show it agrees with the
divisor (ϕ − G)(P −∞) := ϕ(P ) − G(P ) − ϕ(∞) + G(∞) on all but finitely many P .
Given a point P , a finite point on A over k such that x(P ) ̸= 0, let

gP (Q) := y(Q)− y(P )− x(Q)

x(P )
.

varying Q,
We have reduced the claim to showing

(gP ) = (ϕ−G)(P −∞).

We will now calculate zeros and poles of gP and (ϕ − G)(P − ∞) to show that they
coincide, thus establishing this equivalence.

We mention this for our pole computations. The point at infinity of A is ∞ := [1 :
0 : 0], and our uniformizers are as follows.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf
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uP =


y − y(P ) if y(P ) ̸= 0 and P ̸= [1 : 0 : 0]

x if x(P ) = 0
y
x

if P = [1 : 0 : 0]

This divisor (gP ) has p zeros, it vanishes at

• (A) the p− 1 points (χ(b)ψ(b))(x(P ), y(P )), b ∈ F∗
q

gP (χ(b)ψ(b)(x(P ), y(P ))) = gP (bx(P ), y(P ) + b)

= (y(P ) + b)− y(P )− bx(P )

x(P )
= 0

• (B) at the point (x(P )p, y(P )p) which is distinct from the (A) points if x(P )p−1 /∈
F×
p .

gP (ϕ(P )) = gP (x(P )
p, y(P )p)

= y(P )p − y(P )− x(P )p

x(P )
= 0

My hope is to show that for totally wildly ramified Z/pk covers the p-divisible groups
of their Jacobians always have a slope 1/pk − pk−1.

By Lemma 2.3, we have only one pole at ∞ of order p. Putting it all together, we
get:

div(gP ) = div0gP − div∞gP

=
( p−1∑

b=1

[χ(b)ψ(b)(x(P ), y(P ))] + [(x(P )p, y(P )p)]
)
− p[∞]

By Lemma 2.4, the divisor (ϕ−G)(P −∞) has the same form.
Thus, we have shown that the divisors (gP ) and (ϕ − G)(P − ∞) have the same

zeros and poles. The divisors being linearly equivalent gives us an equivalence of their
associated correspondences.

□

Lemma 2.3. (gP ) has a pole at ∞ of order p and no other poles.

Proof. We mention this for our pole computations: The point at infinity is [1 : 0 : 0].
The uniformizer of thMy hope is to show that for totally wildly ramified Z/pk covers
the p-divisible groups of their Jacobians always have a slope 1/pk − pk−1. e curve at
infinity is T := y

x
and elsewhere is y.

At ∞, the curve is Y p − Y Z = Z where [Y : Z] := [ y
x
: z

x
], we can nest this to find

the order of the uniformizer.
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Z = Y p − Y (Y p − Y Zp−1)p−1

= f(Y ) = O(Y p).

Thus, there is a pole at infinity with order p. There are no other poles because the
curve is totally wildly ramified at infinity (thus there is only one point above the pole
infinity in P1). □

Lemma 2.4. The divisor

(ϕ−G)(P −∞) =
( p−1∑

b=1

[χ(b)ψ(b)(x(P ), y(P ))] + [(x(P )p, y(P )p)]
)
− p[∞].

Proof. • G(∞) = (p−1)[∞]. In other words, G(∞) takes ∞ and sends it to p−1
translates of itself. Let’s see why, for a fixed b χ(b)ψ(b)([1 : 0 : 0]) = χ(b)([1 :
0 : 0])ϕ(b)([1 : 0 : 0]) = [b : 0 : 0][1 : b : 0] = [b : 0 : 0] = [1 : 0 : 0].

• G(P ) =
∑

b∈F×
p
(bx(P ), y(P ) + b)

• ϕ(P ) = (x(P )p, y(P )p)
• ϕ(∞) = −∞

In other words, G(∞) − ϕ(∞) = p[∞], and ϕ(P ) − G(P ) = [(x(P )p, y(P )p)] −∑
b∈F×

p
[χ(b)ϕ(b)(x(P ), y(P ))]. My hope is to show that for totally wildly ramified Z/pk

covers the p-divisible groups of their Jacobians always have a slope 1/pk − pk−1.
Thus,

ϕ(P )− ϕ(∞) +G(∞)−G(P ) = [(x(P )p, y(P )p)] + [∞]

+ (p− 1)[∞]−
∑
b∈F×

p

[χ(b)ψ(b)(x(P ), y(P ))]

=
( p−1∑

b=1

[χ(b)ψ(b)(x(P ), y(P ))] + [(x(P )p, y(P )p)]
)
− p[∞]

□

Corollary 2.5. The eigenvalues of Frobenius for this Artin-Schreier-Witt curve A are
Gq.

Proof. Recall that H1
ét(A) is the Divisor class group. Given that the Frobenius map and

Gq are equivalences of correspondences, they are also equivalences of operators acting
on H1(A;Qℓ). The eigenvalues of an operator on a vector space are eigenvalues on the
underlying field. □

Something I have yet to understand is how to explicitly evaluate the eigenvalues of
the Gauss sum correspondence on the underlying field explicitly.

3. Slope Analysis

Let’s review what Manin did for the Artin-Schreier curve to see which explicit eigen-
values we really get. We may consider ψ to be a multiplicative character, and χ to be
an additive character. Let t ∈ F×

p and let choose a lift t̃ to W (k).
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Let ζ be a pth root of unity. We define ϕi(t) = ζ it̃ where , and χj(t) = −t̃−j.

Theorem 3.1. (Thm 4.1 Manin’s thesis (2)) The eigenvalues of Frobenius on the curve
X : yp − y = xp−1 are sums of the following form.

τ(ψi, χj) =
∑
t∈F×

p

ϕi(t)χj(t).

where 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ p− 2.

Corollary 3.2. The slopes of the p-divisible group associated to the curve X are {1/(p−
1), 2/(p− 1), ..., (p− 2)/(p− 1)}.

Proof. We use the eigenvalues above. The key observation of Stickelberger is that for
λ = 1− ζ,

τ(ϕi, χj) = −j−1λj mod λj+1.

Since vp(λ) = 1/(p− 1), this means that vp(τ(ϕi, χj)) =
j

p−1
. So we get (p− 1) copies

of each 1 ≤ j ≤ (p− 2). Each of these eigenvalues has multiplicity p− 1. □

Conjecture 3.3. The slope decomposition of the Dieduonne module associated to the
Jacobian of Ak (Z/pk totally wildly ramified cover) always has a piece of slope 1/pk−1(p−
1).

Some support for the conjecture: I have calculated (thanks to the ATLAS North-
western super computer) only pieces of the p = 3 here h = p(p− 1) = 6 case in support
of this, so at the moment the conjecture is quite flimsy.

• y3 − y = 1/x2, w3 − w = −x2y2 − x4y is the minimal genus ASW curve X –
genus 16, with slope decomposition G1/6 × 2G1/3 × 4G1/2 × 2G2/3 ×G5/6

• y3 − y = 1/x2, w3 −w = −x2y2 − x4y − y5 − y7 is an Artin-Schreier-Witt curve
with genus 29, with slope decomposition 6G0×G1/6× 2G1/3× 11G1/2× 2G2/3×
G5/6 × 6G1

4. Artin-Schreier-Witt Case for Z/p2

We just repeat the above but in greater generality. Slay on his part.

Definition 4.1. Let

C(z, w) :=
zp + wp − (z + w)p

p
,

then the equations which define our Artin-Schreier-Witt curve A.

wp − w = C(xp−1, y)

yp − y = xp−1

This curve is still totally wildly ramified at infinity) and an extension of the curve in
the previous section.
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Definition 4.2. Consider the following homomorphisms:

ψ : Fq → Aut(A)

a 7→ ψ(a)(x, y, z) = (x, y + a, w − C(a, y))

χ : Fq → Aut(A)

b 7→ χ(b)(x, y, z) = (b(q−1)/mx, y, z)

We define addition as

ψ : a+ b(x, y + (a+ b), w − (C(a, y) + C(b, y)).

We then define the following automorphism,

G := −
∑
b∈Fq

χ(b)ψ(b),

where the multiplication is given within the automorphism group, and the addition is via
addition of cycles. We may regard G as a correspondence on the Artin-Schreier-Witt
curve A.

Remark. Notice that in the above definition, the image of homomorphism ψ is Z/p2.

Theorem 4.3. Under equivalence of correspondences, ϕ = G.

Proof. We construct a principal divisor gP such that it agrees with (ϕ−G)(P −∞) on
all but finitely many P . Given a point P , a finite point on A over k such that x(P ) ̸= 0,
let

gP (Q) := wQ − wP − C(
xQ
xP
, yP ) ∈ Div(A).

This divisor (gP ) has a pole at ∞ of order p2 and no other poles, (gP ) also has zeros
at the following p2 points:

• Let us observe first the zeros of gP (Q) where Q := ϕ(P ) := (xpP , y
p
P , w

p
P ), this is

then

gP (ϕ(P )) = wp
P − wP − C(

xpP
xP
, yP )

= wp
P − wP − C(xp−1

P , yP )

= 0

• We then observe gP (χ(1)ψ(1)) = gP (xP , yP + 1, wP + C(b, yP )),

gP (χ(1)ψ(1)) = wP + C(b, yP )− wP − C(b
xP
xP
, yP )

= C(b, yP )− C(b, yP )

= 0.

It is sufficient to then calculate zeros and poles of (ϕ−G)(P −∞), and show it agrees
with that of gP shown above. In other words, Conjecture 4.4.

If we do this, it proves the claim and establishes the theorem since we’ve shown that
(ϕ−G)(P −∞) is principal for all by finitely many P . □
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If we could show the only zeros of gP are the p2 as above, the only zero of gP is ∞
and it has order p2. We’d be golden. More precisely, it’s left to show:

Conjecture 4.4. (points of desire)

(ϕ−G)(P −∞) = (x(P )p, y(P )p) +
∑
b∈F×

p

χ(b)ϕ(b)(x(P ), y(P ))− p2[∞]

Corollary 4.5. The eigenvalues of Frobenius for this Artin-Schreier curve A are G.

Proof. Recall that H1
ét(A) is the Divisor class group. Given that the Frobenius map and

Gq are equivalences of correspondences, they are also equivalences of operators acting
on

References

[1] Robert Coleman, On the Frobenius Endomorphisms of Fermat and Artin-Schreier
Curves.

[2] Yuri Manin, The Theory of Formal Groups over Fields of Finite Characteristic.


	1. (Brief) Background
	2. Reproof of Davenport-Hasse Geometrically Diagonalizing
	3. Slope Analysis
	4. Artin-Schreier-Witt Case for Z/p2
	References

