AN INCOMPLETE PROOF THAT VARIETIES ARE FIBER BUNDLES OF FORMAL DISKS OVER THEIR DERHAM STACKS

A. HOLEMAN, C. RAY

Let N be the nilradical.

Definition 1. We define the stack X_{dR} by its functor of points. $X_{dR}(R) := X(R/N)$.

Nick Rosenblyum mentioned the following theorem.

Theorem 2. Everything is in char 0. Let D be the n-dimensional formal disk and let Aut(D) denote the group scheme of automorphisms of D.

Then, if X is an n-dimensional smooth variety there is a canonical map

$$X_{dR} \to B\operatorname{Aut}(D)$$

such that the corresponding bundle associated to D is X. Here, X_{dR} is the deRham stack of X.

Remark. (Important) We here prove *only* that the fiber over any point of X_{dR} is a disk *when* X *is affine.* (We haven't done the etale descent argument yet). Thanks to Yaroslav Khromenkov for helping with the proof.

Note that in the etale topology, all X may be built out of affine pieces, \mathbb{A}^n_R . We prove first for X affine, then use etale descent.

Proof. We wish to prove that the pullback, Fiber of this diagram is a formal disk.

As X_{dR} is only defined via its functor of points, we think of this diagram in terms of its functor of points.

We rephrase the same diagram here:

We note the definition of the pullback:

 $R(\text{Fiber}) = \{(f,g) | \operatorname{Hom}(A,R) \times \operatorname{Hom}(k,R) | \phi(g) = \psi(f) \}$

Understanding the meaning of the ϕ and ψ maps (let ϵ : Spec $k \to (\text{Spec } A)_{dR}$, and ϵ^{\sharp} be the induced map in rings).

Rewriting this explicitly, R(Fib) is all $(f,g) \in \text{Hom}(A,R) \times \text{Hom}(k,R)$ such that:

In other words, $\phi(g) = \psi(f)$ means that the following diagram commutes:

Note that g is unique because R is a k-algebra, so there is a unique map $g: k \to R$.

So,

 $R(\text{Fiber}) = \{ f \in \text{Hom}(A, R) | \exists g \in \text{Hom}(k, R) \text{ such that } \phi(g) = \psi(f) \}$

Let $m := \ker(\epsilon^{\#})$. Then, $\ker(f \circ q) = m$, and $\ker(f \circ q) = f^{-1}(N) \circ \ker(f)$. Note that

$$f^{-1}(N^i) \supseteq f^{-1}(N)^i$$

AN INCOMPLETE PROOF THAT VARIETIES ARE FIBER BUNDLES OF FORMAL DISKS OVER THEIR DERH

We require R to be Noetherian, which allows us to know that N is finitely generated. Since N is nilpotent and finitely generated, there exists a i such that $N^i = 0$, and thus $(f^{-1}(N))^i = 0$. Thus, for each f, the following commutes for some i:

We wish to show that a map f that factors through A/m^i is equivalent to a map f that satisfies $\phi(g) = \psi(f)$. We have shown how to go from $\phi(g) = \psi(f)$ to a map $A/m^i \to R$ (since q_{m^i} is the canonical quotient map). Thus, it remains to show that if we have a map $j : A/m^i \to R$, where $f := j \circ q_{m^i}$, then the diagram commutes. Note that $m := \ker(\epsilon^{\sharp})$, and thus k = A/m, and since R and R/N are k-algebras, there is a unique map $k \to R$, and $k \to R/N$.

Note that m is nilpotent in m^i . Thus, under the map $q \circ \hat{f} : A/m^i \to R \to R/N$, m is sent to 0. Which means that this map factors through A/m = k. Now, the map $g : k \to R$ is unique because R is a k-algebra, thus the diagram commutes.

Thus, the condition of $\phi(g) = \psi(f)$ may be reformulated as follows:

 $R(\text{Fiber}) = \{h \in \text{Hom}(A/m^i, R), \forall i \mid A/m = k\}$

Recall we are working in the category of prestacks, so the following holds (thanks Grigory Kondyrev):

 $\operatorname{Spec} R \to \operatorname{colim}_i \operatorname{Spec}(A/m^i) = \operatorname{colim}_i \operatorname{Hom}(A/m^i, R) \Leftrightarrow A/m^i \to R$ for any i

Thus, we see that by definition, R(Fiber) = Spf(A, m). So, we have shown that a fiber over a point of the derham space of an affine scheme is a formal disk.