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1. Hecke Orbit Conjecture in Homotopy Theory

The philosophy behind (Dream 1: Modeling the LT action) is that a proper under-
standing of finite subgroups of the Morava stabilizer group requires us to geometrically
understand curves with 4 properties.

Definition 1. Let a curve C over a ring R (where R is a k-algebra) have h-splitting

if the formal group law Ĵac(C) splits off (or contains) a one-dimensional summand of
height h.

Two of these properties necessitate us to understand all classes of curves with h-
splitting (i.e., living in specific Newton strata1) and families of curves with deformed
h-splitting. This is where the following come in:

(1) the Hecke orbit conjecture
(2) generalization of Elkies supersingularity theorem
(3) how the Torelli locus intersects Newton strata. This is done using (n-gonal)

cyclic covers of P 1 which are the easiest curves to deform and work with in
group cohomology, and applying the Taniyama-Shimura lemma to see which
primes your desired fixed Newton polygon works for.

1(We actually want to consider central leaves, not Newton strata. To compute the Lubin-Tate
action, in order to not invert p, we want to work up to geometric isomorphism, not isogeny.
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1.1. Hecke Orbits. Let M be a fixed PEL-type shimura variety associated to a re-
ductive group G. For ease of thought, let us conceptualizeM as parameterizing abelian
varieties. The modular stacks we want to work with are of PEL-type, and thus, they
have a shitton of symmetry (coming from, for example, a bunch of correspondences).
These symmetries preserve all p-adic invariants, including the Newton polygon.

Definition 2. Let T be a set of subgroups permuted by Gk the absolute Galois group
of a char p field k. Then we may consider all x, y ∈ M such that the corresponding
abelian varieties Ax and Ay have an isogeny over the algebraic closure k

0→ G→ Ax
ε−→ Ay,

where G ∈ T . We define {G → Ax → B}T to be all isogenies of with kernel G ∈ T
with the fixed source Ax, where B ranges through all possible targets in M of such an
isogeny.

This definition gives us a correspondence, which projects {G → Ax → B}T to our
fixed Ax on one side, and all possible B arising in {G→ Ax → B}T on the other.

M

{G→ Ax → B}T

M Ax {B} M

α β

So, by pushforward and pullback, we get a map Ax 7→ {B}. Note that this takes one
point to multiple points.

The M on top will actually be some specific level, which is larger than the levels
downstairs. The αp-correspondences are G ∈ T such that G is a locally local group-
scheme (built out of extensions of αp),

(and the α`n-Hecke correspondences are about...I suppose those built out of exten-
sions of αelln , not sure, prime-to-p still confuses me ????).

Understanding how this action takes a non-ordinary point and spreads it out into an
army of cockroaches is the aim of the Hecke orbit conjecture. We need to introduce
leaves to make this precise.

1.2. Leaves: Foliations of M. We consider Hecke orbits related to α`n (i.e., prime-
to-p) isogenies, and αp isogenies. The first moves points in a central leaf, the second
moves points in an isogeny leaf. We can see that α` keeps us in the same central leaf
in the following way. Let

α` → A
ε−→ A′

be an isogeny over k, then take the p-divisible groups,

0→ A[p∞]
ε̃−→ A′[p∞].
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These are now geometrically isomorphic, as the `-torsion kernel is all dead (not
detected by p-torsion).

Definition 3. Central leaves are the geometric *isomorphism* classes of p-divisible
groups.

The Hecke orbit conjecture is about proving that the Hecke orbit of any point in a
central leaf is dense in that leaf 2. Now, central leaves are way way more interesting and
important for homotopy theory than being Newton strata. This is because they don’t
invert p, and we are interested in computing p-torsion groups and thus do not want to
invert p.

In particular, if we pick an ordinary point z ∈M, take the Zariski closure of its orbit
under prime-to-p isogenies, Z := (t∗Nz)zar. Let Az be the abelian variety associated
to z, and let AutM(Az) be the automorphism group preserving the Shimura variety
structure (polarization, level structure and suchlike). Let us denote Z∧z be the formal
completion of the variety at the point z, and C be the central leaf containing z. Then,
we have an action of AutM(Az) on

Z∧z ⊆ C∧z .
Z∧z is stable under this action (since it is prime-to-p Hecke stable). We then reduce

the problem to showing that all formal subschemes which are stable under this action
are actually the entire M∧

z . This would allow us to conclude that

Z∧z ' C∧z ,

i.e, the Hecke orbit conjecture is true (for the central leaf C). No known approaches
understand how to use that Z is algebraic.

Definition 4. Between any two central leaves in a Newton stratum, we have a corre-
spondence by iterated αp-isogenies – so we may study orbits by such isogenies, which
gives us the notion of an isogeny leaf.

I find the isogeny leaf definition rather unenlightening, let’s look at an example.

Example 1. Let E × E be a product of two supersingular elliptic curves (do I need
them to be geometrically iso, not sure). Let’s define their isomogeny leaf. We have a
map

F : : k 7−→
{
G ⊂ (E × E)[p]

∣∣∣∣G defined over k,
G is of order p.

}
This is represented by a P1. This char p version is hella strange (in char 0, its finite).

Its truly surprising, and I’ve been told that this fact is apparently somewhere in Pink
but I haven’t found it.

Example 2. Turns out central leaves and isogeny leaves are almost transversal, and
that every component of a Newton polygon stratum is up to a finite morphism iso-
morphic with the product of any of the isogeny leaves with a finite cover of any of the

2This is immediate for ordinary points, as they are dense in all ofM, restated: A[ξ] is open for the
ordinary Newton stratum ξ, i.e., any two ordinary curves are geometricall isomorphic.
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central leaves. One way to intuitively see that the two kinds of leaves are transverse is
again with our favorite example of two supersingular elliptic curves.

All endomorphisms of Es × Es are defined over Fp2 . Let Gs denote the p-div group
of Es. Now, End(Gs×Gs) is defined over Fp2 , and most of the P1 is defined over bigger

fields. So, given x ∈ P1(k)\P1(Fp2),
(Gs ×Gs)/Gx ' Gs ×Gs,

since the subgroup is not defined, its not in the same central leaf.

finish thinking about this

1.3. h-splitting of AbVar. Let k be a numberfield. I wanted to mention:
Relation of Intersections of Hecke orbits to isogeny: Let’s take y and z to be the points
corresponding to the elliptic curves E and E ′ in X(1)k, and take their Zariski closures
Y and Z resp. in X(1)Ok

. Then, the geometric intersection points of Z and (tN)∗Y
correspond to pairs (finite place p of k, cyclic isogeny of degree N between Eκ(p) and
E ′κ(p) where κ(p) is the algebraic closure of the residue field).

Remark. We pullback pushforward to get maps on

H0(A,Ω1)
α∗
−→ H0(C,Ω1)

β∗−→ H0(B,Ω1),

and then use that

S2(Γ0(N)) ' H0(X0(N),Ω1)

f(z) 7→ f(z)dz).

β∗ ◦ α∗

acts as a Hecke operator on S2(Γ0(N)) (on the usual prime to p corresp of C = X0(pN)
and A,B = X0(N)). We can see this by carefully tracing through and seeing that we
get something which looks like a correspondence which scales lattices (pg 114), i.e.,
Tp. The prime-to-p case of modular curves is discussed here in more detail than I
give (https://wstein.org/edu/Fall2003/252/lectures/10-31-03/10-31-03.pdf).
I also found this reference, http://www.digizeitschriften.de/dms/img/?PID=GDZPPN00210749X
which is relevant and richer but with more detail than we need right now.

2. Local Langlands action of J and Hecke Orbits

We see from the above discussion of Hecke correspondences on levels, that a conju-
gation action on level sets can be thought of as pushing and pulling back through a
correspondence.

Question 3. Why is this an action by a quaternionic division algebra?

Remark. The action of J in local langlands only appears at infinite level (at the global
level). So, how does this global J is relate to the J in the Lubin-Tate action? Its
nontrivial, proved by Faltigs originally, and I don’t understand it yet: here is a modern
reference (Theorem E in https://arxiv.org/pdf/1211.6357.pdf).


