
Contextual Machine Learning Through the Analysis and Chunking of

Partially Translated Grade 2 Braille

Catherine Ray

Abstract

I developed a machine learning program that uses contextual analysis algorithms to deduce the complex
grammar rules of Grade 2 Braille given partially translated text. Using a known set of symbols (Grade 1
Braille), the parser translates the known symbols of Braille to English, and marks leftover unknown patterns
and discrepancies. The parser matches unknown patterns to word groups and abbreviations. These learned
patterns are stored in a persistent Map[String, TranslationOptions] format.

1

SemesterReport

Acknowledgements

I’d like to thank: Dr. Marr for introducing me to the beautiful complexity of Computational Semantics; Dr.
Jahangeer for her amazing encouragement and her willingness to answer questions; Dr. Borne, Dr. Marr, and
Dr. Papaconstantopoulos for supporting me and convincing me to major in Computational and Data Sciences;
www.braillebookstore.com for printing and distributing books in Grade 2 Braille, excerpts of which helped train
CAMEL.

2

CONTENTS SemesterReport

Contents

1 Introduction to Braille 4
1.1 Binary Braille . 4

2 Introduction to CAMEL 5
2.1 String Processing Method . 5
2.2 Methods of Tagging and Text Extraction . 5
2.3 Using Contracted Braille As a Platform . 6

3 Evolution of the Program 7
3.1 Uncontracted Braille-to-English Translator . 7
3.2 Partial G2-English Translator . 7
3.3 Matching Partial G2-English Translation to Corresponding English Chunks 8
3.4 Storing and Retrieving Unknowns to Improve Partial Translation . 8
3.5 Matching Separate Occurances of Unknowns to Infer Meaning . 9
3.6 Storing Translation Options in Map[String, TranslationOptions] Format 9
3.7 Adding Functionality . 9
3.8 Optimizing the Program . 9

4 Results and Conclusions 9
4.1 Safety of Community . 9
4.2 Proof of Concept . 10
4.3 GUI . 10
4.4 Further Research . 10

5 Documentation for CAMEL 11

6 Source Code 11

A Braille Alphabets 14

B Prefix Indicator 14

C Contraction for Part of Word 15

D Final Letter Contraction for Middle or End of Word 15

E Initial Letter Contraction for Whole or Part of Word 15

F Abbreviation for Whole Word 16

G Bibliography 16

3

1 Introduction to Braille SemesterReport

1 Introduction to Braille

Standard Braille is an approach to creating documents which can be read through touch. As English words are
composed of letters, Braille words are composed of Braille cells. A cell consists of six dots arranged in the form of a
rectangular grid of two dots horizontally and three dots vertically. With six dots arranged this way, one can obtain
sixty three different patterns of dots. The sixty-fourth pattern, a blank cell, represents a space.

In addition to letters, the Braille alphabet includes combination of dots for punctuation, capitalization and
numbers. In the Braille alphabet is depicted by a cell that contains six raised dots. The cell is divided into three
rows of two columns. A letter is indicated by which dots are raised and which are smooth. Any letter can be
capitalized by placing an indicator in front of the letter.

Capitalization is indicated by a cell with only the sixth dot, or the last dot of the cell in the lower right hand
corner of the cell, raised while the rest are smooth. This cell appears in front of a letter cell to show capitalization.
To capitalize an entire word, two cells with only the sixth dot raised in each cell is placed in front of the first letter
of the word.

For example: ’ccc’ =
r r r r r r

; ’Ccc’ = r r r r r r r
; ’CCC’ = r r r r r r r r

Numbers are represented using the first ten letters of the alphabet, ”a” through ”j”, and a special number

sign, r rrr . This number sign is placed in front of a word to convert the entire word into numbers. If one wishes to

switch from numbers to letters within a word (i.e. 212a) the letter sign,
rr , is used.

For example: ’cc’ =
r r r r

; ’33’ = r rrr r r r r
; ’3c’ = r rrr r r rr r r

Contractions are special characters used to reduce the length of words. English includes contractions (for
example, ”don’t” is a contraction of the two words ”do” and ”not”). In Braille there are 189 additional contractions.
Some contractions stand for a whole word.

For example: ’for’ =
rrr rrr ; ’and’ =

rrr rr ; ’the’ =
rr rr . Other contractions stand for a group of letters within a word.

In the example below, the contraction ”ing” is used in the word ”sing” and as an ending in the word ”playing.”
Likewise, the contraction ”ed” is used in the word ”edge” and as an ending in the word ”played.” ’

{ing} = r rr ; ’s’ + {ing} =
rr r r rr ; ’play’ + {ing} =

rrr r rrr r rr rrr r rr
{ed} =

rr rr ; {ed} + ’ge’ =
rr rr rr rr r r

; ’play’ + {ed} =
rrr r rrr r rr rrr rr rr

Short-form contractions are abbreviated spellings of common longer words. For example: ”tomorrow” is
spelled ”tm”, ”friend” is spelled ”fr”, and ”little” is spelled ”ll” in Braille.

Translating the phrase ”you like him” into uncontracted (a.k.a Grade 1 Braille) and contracted (a.k.a Grade 2
Braille), the effect contractions have on sequence length is evident.rr rrr rr r rr r rrr r r rr r r rr r r r rr r (Uncontracted)rr rrr rrr rr r rr r (Contracted)

The reader is encouraged to see the appendices for further information on Grade 1 and 2 Braille translations.

1.1 Binary Braille

The Braille alphabet is depicted by a cell that contains six raised/flat dots, numbered one through six beginning
with the dot in the upper left-hand corner with the number descending the columns (see figure below). In order
to create a bitstring easily parsable by the computer, ”0” = flat, ”1” = raised. The 3x2 matrix (Braille cell) is
represented as a 1x6 bitstring (Binary Braille).

1 4
2 5
3 6

= 1 2 3 4 5 6 ; Thus, ”c” =
r r
≡
· ·

≡
1 1
0 0
0 0

≡ 1 0 0 1 0 0 ≡ 100100

4

2 Introduction to CAMEL SemesterReport

2 Introduction to CAMEL

CAMEL is an acronym of ContextuAl MachinE Learning - with Braille as a language platform, this machine
learning program uses the context of unknown symbols to deduce meaning and compress information. Provided
the meaning of an initial set of symbols (a dictionary, or dict), CAMEL infers the meanings of unknowns and
adds these meanings to the dict. Some symbols differ in meaning depending on their context. These translation
options are stored in the dict in the form of Map[String, TranslationOptions].

2.1 String Processing Method

CAMEL deduces the complex grammar rules of Grade 2 Braille given partially translated text. It learns new
symbols by taking 2 input text files (Braille text and corresponding English text), and analyzing them until all
unknowns are identified, their meanings are found, and said symbols and their meanings are added to the dictionary.

2.2 Methods of Tagging and Text Extraction

CAMEL must Tag Unknowns & Compare to English(Extract Chunks) to infer symbol meaning. Four different tag
types were used: end, front, mid, and full-word. Below are examples of how these different types of tags were each
used to extract meaning.

5

2.3 Using Contracted Braille As a Platform SemesterReport

2.3 Using Contracted Braille As a Platform

Below is an example of the process of Tagging and Text Extraction, in which CAMEL infers the symbols that
represent en and in using the word penguin (contracted to p{en}gu{in} in Grade 2 Braille):

6

3 Evolution of the Program SemesterReport

3 Evolution of the Program

CAMEL was programmed in Python 2.7.3. This language was chosen because of the mutable nature of the dict
constructor[2]. Henceforth, this paper will refer to the set of symbols in Uncontracted Braille as ”G1” and the set
of symbols in Contracted Braille as ”G2.” This table demonstrates (using arbitrary example inputs) the evolution
of the program, version by version.

Version Input (Partial)Translation Output Note

0
rr r rr rr rr r rrr r r r rr rr stop it only accepts G1 input

1 r r rr r rrr r r r rr rr *op it accepts G2 input

2 r r rr r rrr r r r rr rr *op it st = * doesn’t differentiate between unknownsrrr r r r rr rr rr r r r rr r r rr r rr r rrr r rr r p*gu* has fl*s eninea = ***

3
rrr r r r rr rr rr r r r rr r r rr r rr r rrr r rr r p0gu1 has fl2s en = 0 =

r r differentiates between unknowns

in = 1 = r r
ea = 2 =

r
4

rr r rr r rr r rr rrr r r rr r rrr r r rr rr rrr off0 is p12 er = 0 =
rr rrr improves accuracy of inferred meaning

offer is p3er ow = 3 =
r rrrr r r rr r rrr r r rr rr rrr k is power retrieves unknowns to

improve partial translation

5
rr r r rr r rrr r r rr rr rrr k is p01 ow = 0 =

r rr detectsa and infers one-letter contractions

k is pow2 er = 3 =
rr rrr

k is power
rr =
{k or knowledge}rr rr r r rr r rr x is knowledge x = {x [in word] or it}

6 r r rrr rr r rrr r rr rr r r r rr
0 0234 and = 0 =

rrr rr capital letter and number functionality

3.1 Uncontracted Braille-to-English Translator

The first step was coding a functional program that translated raw G1 input into English text. Using a hard-coded
Python dict, this was rather simple. CAMEL was given a dict containing only G1 symbols.

When the Braille input contained the string 011100 011110 101010 111100 000000 010100 011110,
”stop it” was returned.

This function can be represented in Python-esque psuedocode as follows.

function (array of G2-words):
translated_word = empty string
for each word:

for symbols in word:
symbol = dict[symbol]
translated_word = translated_word + symbol

translated_sentence[index of word] = translated_word
return translated_sentence

3.2 Partial G2-English Translator

Recall that G1 is uncontracted Braille. The set of G2 symbols consists of G1 symbols and additional contracted
cells. Since the given dict consists only of G1 symbols, contracted cells are not recognized.

Recall that G2 = G1 ∪ Contracted Cells, thus G1 ⊂ G2. In Version0, if CAMEL processed a symbol that it
did not recognize (i.e. symbol /∈ dict), a KeyError was thrown. This is due to the nature of Python dict
constructors[2].

In order to take G2 input and translate the known patterns, a try-except error catcher was added. The error
catcher translated unknown cells as *.

function (array of G2-words):
translated_word = empty string

7

3.3 Matching Partial G2-English Translation to Corresponding English Chunks SemesterReport

for each word:
for symbols in word:

if symbol in dict:
symbol = dict[symbol]

else:
symbol = *

translated_word = translated_word + symbol
translated_sentence[index of word] = translated_word

return translated_sentence

When ’braille.txt’ contained the string 001100 101010 111100 000000 010100 011110, *op it was
returned. The string 001100 ≡ ”st” in G2, but ”st” /∈ G1, and was consquently represented as an asterisk.

3.3 Matching Partial G2-English Translation to Corresponding English Chunks

We must be able to remove duplicates from sets whilst keeping order. The Python set is an unordered collection
with no duplicate elements. We need an ordered collection with no duplicate elements, so another method is
introduced.
I will feed Version2 ”stop it = *op it”, and Version must see that *=st, for all other characters are accounted for.
I did this by taking the translated sentence.

function (translated sentence)

When ’braille2.txt’ contained the string ”001100 101010 111100 000000 010100 011110”, evaluated by the ’trans-
late’ method as ≡ ”*op it”, and ’eng2.txt’ contained the string ”stop it”. ”st = *” was returned!
Given two inputs
input1 = ”stop it”

input2 = r r rr r rrr r r r rr rr
The program translates input2 using the given G1 dictionary. However, input2 has symbols not in the G1

dictionary, thus these symbols are left untranslated. input2 = r r rr r rrr r r r rr rr → output1 = r r op it
Given that input1 = input2, and input2 = output1 the program compares the overlap between input1 and

output1 to find the most likely meaning of the unknown symbol. ”stop it” = r r op it ⇒ r r ≡ ”st”
Summarized, Version2 does the following:

”stop it” = r r rr r rrr r r r rr rr → r r op it ⇒ r r ≡ ”st”

3.4 Storing and Retrieving Unknowns to Improve Partial Translation

This seemed to work wonderfully, but when applying Version1 to the English phrase ”penguin has fleas.” The
partially translated string ≡ ”p*gu* has fl*s” was created; this gave ”eninea = ***” as the output. This finds the
English chunks, but doesn’t differentiate between the unknowns.

In order to differentiate the unknowns, the program was altered such that the asterisks were replaced with
numbers. Thus, instead of ”p*gu* has fl*s”, we differentiate the unknowns as ”p0gu1 has fl2s.” Furthermore, regex
was used to extract the flags before and after each digit. So, ”0” was preceeded by ”p” and followed by ”g”, when
this search was applied to ”penguin”, the ”en” was extracted. Success, and the birth of Version3 (mostly edits to
the translate method). Once the unknowns were successfully stored, they were utilized by the program.

This version takes into account the following tags (see Introduction to CAMEL[2.2])
(1) Letters before and after the unknown
(2) Letters after the unknown
(3) Letters before the unknown
(4) Unknown alone

8

3.5 Matching Separate Occurances of Unknowns to Infer Meaning SemesterReport

3.5 Matching Separate Occurances of Unknowns to Infer Meaning

This version (Version4) looks at consequent unknowns. For example, the G2 braille form of ”offer is power” is
”off{er} is p{ow}{er}.” Note that {er} is present in two seperate occurances, additionally, {ow} and {er} are
consequent.rr r rr r rr r rr rrr r r rr r rrr r r rr rr rrr → off

rr rrr is p
r rr rr rrr

This is taking ”power” = ’p10’, and returning 1 = ”ower”, 0 = ”er”; this error is eliminated by retranslating
the input each time a new unknown was found.

3.6 Storing Translation Options in Map[String, TranslationOptions] Format

This required use of the known text to match TranslationOptions to the given English text. For example, the pat-
tern bb is used for both ”bb” and ”be”. Thus, once the computer infers a meaning, the computer will translate
other instances of this pattern incorrectly. Using the structure of a Python dict, it is simple to add options for keys.

This version takes into account the following tags (see Introduction to CAMEL 2.2)
(1) Letters before and after the unknown
(2) Letters after the unknown
(3) Letters before the unknown
(4) Unknown alone
(5) Known alone (a.k.a. translation options for one-letter contractions)

The first instance of this I dealt with is one word contractions. The output of Version5 was
110111 = er
010101 = ow

Input: offer knowledge is power

Output: offer k is power

One letter contractions exist: k means knowledge in this context.

In Version5, I mainly optimized the system of detecting translated letters vs. untranslated ones.
The context in which ”k” = knowledge is found is The source code used to implement this algorithm is in Source

Code[7.6].

3.7 Adding Functionality

In order to include number and capitalized letter functionality, new checks were added to the translate method.

3.8 Optimizing the Program

In order to save time and processor power, a generator was used (instead of an iteratable array) when printing
partially translated text.

Using regular expressions (instead of repeatedly searching combinations of the array indices) improved the time
and accuracy of English chunk extraction.

4 Results and Conclusions

4.1 Safety of Community

• commercial application in development that will prevent future mislabeling, such as

9

4.2 Proof of Concept SemesterReport

• allows sighted people to protect the blind community

4.2 Proof of Concept

• 1st succesful automated program that learns compressed Braille

• translation system is effective for arbitrary symbol systems

• language platform easily changed

CAMEL is the 1st succesful automated program that learns compressed Braille. This translation system is
effective for arbitrary symbol systems, and the language platform easily changed.

4.3 GUI

For users not familiar not comfortable with the binary representation of Grade 2 Braille, a GUI option was created.
This immediately converts from a graphical braille representation into a binary string for CAMEL to parse.

This program could be expanded to an application for sighted-people not familiar with braille. Instead of
manually entering Braille with the GUI system, a user could point their phone’s camera at the Braille string they
wish to translate, and image processing techniques could identify the Braille listed. This Braille would be translated
using the dictionary generated by CAMEL.

4.4 Further Research

The method of detection for one letter contractions is comparing the original text, not checking likely matches
for the one-letter contractions in a weighted sentence dictionary. CAMEL implements word-level analyzation, and
could be improved by using sentence-level analyzation.

The results of this project are the foundation for a usable app (Section[4.3]), for the sighted to decode Braille
writing.

10

5 Documentation for CAMEL SemesterReport

5 Documentation for CAMEL

Function: translate
Translates known characters, assigns integers to unknown characters.

Parameters:
brl array - array of binary strings, one string per index

Returns:
(Partially-)translated string.

Function: file2array
Extracts text from file into parsable format.

Parameters:
filename - name of the file from which to extract the strings

Returns:
array of strings, one word per index (whitespace is used to determine word seperation)

Function: matching
Recursively infers and stores (updates dict) the meanings of unknown symbols.

Parameters:
partially translated text - array of partially translated words, one word per index

Returns:
Recursive output of translate using the updated dict

Function: testing
Searches for, identifies and translates capitals, numbers, and one-letter contractions.

Parameters:
new translation - newest translation of input

Returns:
None

Function: weight (in progress)
Weights the translation options from the given symbol’s dict entry using the context of the sentence.

Parameters:
dict symbol - dict entry for given symbol
brl array - array of binary strings, one string per index

Returns:
Most likely translation of a given symbol.

6 Source Code

Version6

from collections import Counter as mset

import re

all_powerful_counter = 1 #counts the times the partially translated text is run through the program and
re-translated

#dictionary of known Grade 1 patterns
dict = {’100000’ : ’a’, ’110000’: ’b’, ’100100’ : ’c’, ’100110’ : ’d’, ’100010’ : ’e’, ’110100’:’f’, ’

110110’ : ’g’, ’110010’ : ’h’, ’010100’ : ’i’, ’010110’ : ’j’, ’101000’: ’k’, ’111000’ : ’l’, ’
100101’: ’m’, ’101110’: ’n’, ’101010’: ’o’, ’111100’: ’p’, ’111110’ : ’q’, ’111010’: ’r’, ’011100’ :
’s’, ’011110’: ’t’, ’101001’ : ’u’, ’111001’: ’v’, ’010111’ : ’w’, ’101101’: ’x’, ’101111’ : ’y’, ’
101011’ : ’z’, ’000000’ : ’ ’, ’000001’ : ’*’, ’001111’ = ’#’}

11

6 Source Code SemesterReport

dictnum = [’010110’,’100000’,’110000’, ’100100’, ’100110’, ’100010’, ’110100’, ’110110’, ’110010’, ’
010100’] #index of string corresponds to number

filename = ’braille5.txt’ #filename of G2 Braille
filename0 = ’eng5.txt’ #filename of equivalent English

def execute():
testing(matching(translate(file2array(filename)))) #Finds meaning of braille2

def file2array(filename):
with open(filename, ’r’) as f:

array = [word.strip() for word in f] #extracts strings from file
array = [word.strip() for word in str(array[0]).split(’ ’)]

return array

dictU={}
def translate(brl_array, count=0):

t=[]; duplicates = []
count = count
for key in brl_array:

if dict.get(key) == None and duplicates.count(key) == 0:
duplicates.append(key)
t.append(dict.get(key, str(count))) #Substitutes unknown pattern for integer to

hold its place
dictU[str(count)] = key #Appends substituted char and corresponding keyvalue, ex

: ’0’:’010010’ for future lookup

count = count+1
elif dict.get(key) == None and duplicates.count(key) != 0:

t.append(dict.get(key, str(duplicates.index(key))))
else:

t.append(dict[key])
x = ’’.join(t)
x = [word.strip() for word in x.split(’ ’)] #a list of the partially translated words
#Note that the indexes of x and e show the relationship between the PT and eng words.
return x #partially translated text

e = file2array(filename0) #a list of the english words

def testing(new_translation):
words = matching(new_translation) #Print translation
for word in words:

if re.search(’ˆ\#’, word) != None: #checks for number indicator
for letter in range(len(word)-1):

nums.append(dict_num.index(word))
nums = ’’.join(nums)
words[words.index(word)] = nums

elif re.search(’ˆ*’, word) != None: #Checks for Caps Symbols
if word[0] == "*" and word[1] != ’*’:

new = word[1:]
new = new.capitalize() #Capitalize First Letter

else:
new = word[2:]
new = new.upper() #Capitalize entire word

words[words.index(word)] = new

print "\nGoal: %s \nTranslation: %s\n"%(’ ’.join(e),’ ’.join(words))
result = words
for x in xrange(len(e)):

if result[x] != e[x]: #Check that translated and original words are the same
print "\nOne letter contractions exist:\n%s means %s in this context." %(result[

x],e[x])
else: pass

def matching(partially_translated_text):
duplicates1 = []; index_of_word = 0
z = partially_translated_text
counter = 0 #Used to determine which cell is being evaluated within word, if word contains

multiple unknown cells

12

6 Source Code SemesterReport

for word in z:
for m in re.finditer("[a-zA-Z\s]*?\d\w*", word): #Finds words with unknown symbols

if re.search(’[a-z]*’, m.group()) != None: #If word has no characters besides
the unknown symbol, ignore.

unknown = (re.search(’\d+’, m.group())).group() #find unknowns in word
for n in re.finditer(’\d{1}’, m.group()): #iterate through unknowns

if len(unknown) != 1: break
else:

#for c in re.finditer(’[a-z]+’, m.group()): #Note to
self: Use of [a-z]+ ==> 2er3hg ==> er, hg

#h = e[index_of_word].replace(c.group(), ’’)
#\w*?(?=\d) ==> abc1nn ===> abc

tag = (re.search(’\w*(?=\d)’, m.group())).group() #find
unknowns in word

h = e[index_of_word].replace(tag, ’’) #look at
corresponding english word, remove tagged char from
word, in this case, characters preceeding the
unknown

l = m.group().replace(tag, ’’)
if re.search(’[a-z]+’, l) != None: #If there are

translated letters after the unknown, clear the
translated letters.

next=(re.search(’[a-z]+’, l)).group()
h = h.replace(next, ’’)

else: pass #set unknown equal to english match
dict[dictU[n.group()]] = h
print dictU[n.group()] + ’ = ’ + h #Prints learned

symbols

counter = counter+1
index_of_word = index_of_word +1

version = all_powerful_counter + 1
return translate(file2array(filename),version)

execute()

13

A Braille Alphabets SemesterReport

A Braille Alphabets

B Prefix Indicator

14

C Contraction for Part of Word SemesterReport

C Contraction for Part of Word

D Final Letter Contraction for Middle or End of Word

E Initial Letter Contraction for Whole or Part of Word

15

F Abbreviation for Whole Word SemesterReport

F Abbreviation for Whole Word

G Bibliography

[1] http://texdoc.net/texmf-dist/doc/latex/braille/summary.pdf
[2] http://docs.python.org/2/library/stdtypes.html#dict

16

