
By a path from A to B we mean a sequence of vertices A, V1, V2, · · · , Vn, B such that any two
consecutive vertices in the path are connected by an edge. The length of the path is the number of
edges in it. If we’ve assigned values to the edges, the weight of the path is the sum of the values
assigned to all the edges in the path.

Lemma 1. Given any assignment of 0,1 to the edges of an n−cube such that the sum of the edges
of any square are even, then any two paths from A to B have the same weight modulo 2.

Proof. Note that if we concatenate paths, the weight of the concatenation is the sum of the original
weights. In this light, it suffices to prove that the weight of any loop is zero.

Now, we note that from any given vertex of an n−cube, there are n different vertices one can
travel in, one in each principal direction (if we’re representing vertices as binary strings, this each
of these corresponds to flipping one bit.) We thus define n “moves” l1, l2, · · · ln, such that lk(V )
denotes the vertex one gets after moving from V in the k-th principal direction.

A loop, then, corresponds to a starting vertex V and a sequence a1, a2, · · · , an of moves such
that the number of occurrences of each lk is even. Loops starting at a given point semigroup under
concatenation of the move sequences.

Suppose now that we mod out by the equivalence relation in which two loops are equivalent if
they have the same weight. Since any loop is now its own inverse, this makes our set of loops into a
subgroup of the group with presentation 〈l1, l2, · · · , ln|K〉, for some set of relators K. (In particular,
it is the subgroup of elements for which each of the li appears an even number of times.) At the
very least, we note that K contains l2i and lilj lilj (the second following from the fact that the edges
of any square have weights adding up to zero mod 2.) We claim that the subgroup of even degree
elements of 〈l1, · · · ln|l2i , lilj lilj〉 is the trivial group - this will imply that the even-degree subgroup in
〈l1, l2, · · · , ln|K〉 is also trivial, which will imply every loop has the same weight (in particular, zero.)

Because lilj lilj = 1, we can write lilj = l−1j l−1i and thus lilj = lj li - in particular, our group
is commutative! But this means we can rearrange any product into la1

1 la2
2 · · · lan

n . For elements of
our group which correspond to loops, each of the ai must be even, and since each li is its own
inverse this implies all the loops correspond to the identity and thus have the same weight! (In
particular, weight zero.) This proves the lemma.

Now, we must show that there will always be a unique way to fill in the “remaining” edges of
the n−cube. Let Qn be the graph corresponding to our n−cube, and let Q1

n−1 and Q2
n−1 denote

the two disjoint copies of Qn−1 which construct it. Suppose we have a good coloring of each of
these, and we wish to extend to to a good coloring of Qn.

Each edge in Qn is either an edge in one of the copies of Qn−1 (which we will call a “trivial
edge”), or an edge between corresponding vertices in the two copies (which we will call a nontrivial
edge). We note that by the bipartite nature of Qn, the only 4-cycle a nontrivial edge can be part
of consists of two vertices in Q1

n−1 and their counterparts in Q2
n−1.

We can thus restate our condition that our choice of a coloring for nontrivial edges as follows:
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On each edge of Qn−1, we wish to place a zero or one corresponding to the mod 2 sum of the
numbers on the corresponding edges in Q1

n−1 and Q2
n−1 - we wish to place 0s or 1s on the vertices

such that the number on each edge corresponds to the mod 2 sum of the numbers on the vertices
bounding it. (This is the same as coloring nontrivial edges, since each nontrivial edges corresponds
uniquely to one vertex and four-cycles containing nontrivial edges in Qn correspond to pairs of
nontrivial edges and the sum of the corresponding edges in Qn−1.)

We now do this as follows: Choose an arbitrary vertex V of Qn−1 and place either a 0 or a 1
on it. (Let b denote the bit we placed on it.) We claim the remainder of the (n − 1)cube may be
filled in uniquely, as follows:

For each vertex V ′, choose a path from V to V ′ - if the weight of this path is w, we place the
mod 2 sum b ⊕ w on V ′. (This does not depend on the path chosen, due to the lemma - the
weights of the edges of any 4-cycle in Qn−1 add up to zero because they both added up to 1 ini-
tially.) The two vertices bounding each edge must add up to that edge mod 2 (this can be seen by
choosing a path leading to one of the vertices, and the same path with the edge added to it. The
weights of these two paths differ by (and thus add up to mod 2) by the weight of the edge, as desired.

We thus only need to show that once V and b are chosen, the coloring is unique. But this fol-
lows, because each vertex’s number is uniquely determined by any vertex sharing an edge with it
and the weight of that edge. Since Qn−1 is connected, knowing the weights of all the edges and one
vertex means there is at most one possible coloring of the rest of the vertices. QED.

(This was mostly written after 1 am and so I have no idea how followable it is.)
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