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Abstract

This paper discusses basic properties of Eilenberg-MacLane spaces
K(G, n), their cohomology groups and some classic applications. We
construct K(G,n) using both CW complexes and classifying spaces.
Two proofs are given to the basic fact that cohomology of a CW
complex X has 1-1 correspondence with homotopy classes of maps
from X into Eilenberg-MacLane spaces: a barehanded proof (original)
and a categorical proof using loop spaces. We use it to demonstrate the
connection between cohomology operations and cohomology groups
of K(G,n)’s. Finally we use the technique of spectral sequence to
compute the cohomology of some classes of Eilenberg-MacLane spaces,
and apply it to the calculation π5(S3).

1. Introduction

A space X having only one nontrivial homotopy group πn(X) ∼= G
is called an Eilenberg-MacLane space K(G, n). The simplest exam-
ples are K(Z, 1) ' S1, K(Z/2, 1) ' RP∞, and K(Z, 2) ' CP∞. In
general they are more complicated objects. The Eilenberg-MacLane
spaces play a fundamental role in the connection between homotopy
and (co)homology. The first basic fact we will prove is that, given a
CW complex X, there is a bijection between its cohomology group
Hn(X; G) and the homotopy classes of maps from X to K(G,n). Us-
ing this, it is not hard to show that cohomology operations are com-
pletely classified by the cohomlogy groups of K(G,n)’s. The latter
seems to be quite complicated to compute, since the construction of
K(G, n) as CW complexes involves attaching cells to cancel arbitrarily
high dimensional homotopy groups. Fortunately they are computable
via spectral sequences. For example, it has been proved by Serre that
H∗(K(Z/2, n);Z/2) is a polynomial ring over Z/2, with generators ob-
tained by all the different way (unrelated by Adem relations) of acting
the Steenrod squares on a fundamental class α ∈ Hn(K(Z/2, n);Z/2).
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The results in this paper have been known for 50 years. We are
mostly following Hatcher’s book Algebratic Topology and the book of
Bott and Tu, Differential Forms in Algebraic Topology. Other sources
are listed in the references. The bare-handed proof of theorem 2 is
original.

The paper is organized as follows. In section 2 we construct
the Eilenberg-MacLane spaces, using CW complexes and classifying
spaces. Section 3 studies some basic properties of K(G,n), their role
in the connection between homotopy and cohomology, and classifying
cohomology operations. As applications we show that the first Stiefel-
Whitney class and the first Chern class classify the real and complex
line bundles over CW complexes. In section 4 we employ the technique
of spectral sequence, and use it to compute a number of example of
cohomology groups of K(G,n)’s. Finally results of H i(K(Z/2, 3)) are
used to compute π5(S3).

2. Construction of Eilenberg-MacLane Spaces

Theorem 1 There exists a CW complex K(G,n) (unique up to ho-
motopy type) for any group G at n = 1, and Abelian group G at n > 1.

Proof: Step 1 - Construction of K(G, 1).
Let EG be the ∆-complex whose n-simplices are given by {[g0, · · · , gn]|gi ∈

G}, glued along the faces [g0, · · · , ĝi, · · · , gn] in the obvious way. Con-
sider a homotopy ht : EG → EG, t ∈ [0, 1], such that the restriction
of ht to the simplex [g0, · · · , gn] is given by the linear retraction of
[e, g0, · · · , gn] onto e, with e being the identity element of G. It is
clear that ht is a homotopy between EG and the point e, so EG is
contractible. Note that h is not a deformation retraction, since it
moves e along the loop [e, e].

There is a natural action of G on EG,

g : EG −→ EG
[g0, · · · , gn] −→ [gg0, · · · , ggn]

where g maps the simplex [g0, · · · , gn] linearly onto [gg0, · · · , ggn]. It is
not hard to see that this is a covering space action. Let BG = EG/G
be the quotient space, then π1(BG) = G. Since EG → BG is a fiber
bundle with fiber G having discrete topology, the long exact sequence
of homotopy groups implies πi(BG) = 0 for all i > 1. So BG is a
K(G, 1) space.
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As a side remark, the space BG is also a ∆-complex, since the
group action permutes the simplices. Explicitly, a simplex of BG has
the form

[g1|g2| · · · |gn] := G[e, g1, g1g2, · · · , g1 · · · gn]

and the boundary of the simplex is

∂[g1| · · · |gn] = [g2| · · · |gn]+(−1)n[g1| · · · |gn−1]+
n−1∑

i=1

(−1)i[g1| · · · |gigi+1| · · · |gn]

Written in this form, it is clear that simplicial (co)homology groups of
the ∆-complex BG is nothing but the group (co)homology of G. So
we learned that the cohomology groups of K(G, 1) (if we have proved
its uniqueness) is the group cohomology of G.

Step 2 - Construction of K(G,n) for Abelian group G.
To each generator gα of G we associate an n-sphere Sn

α. So we
have πn(

∨
α Sn

α) =
⊕

α Z. A relation between the generator gα’s can
be realized as the class [ϕβ], represented by the map ϕβ : Sn → ∨

α Sn
α.

Consider the CW complex X obtained from
∨

α Sn
α by attaching (n +

1)-cells en+1
β via the maps ϕβ.

Since any map Si → X is homotopic to a cellular map, and X
has no i-cells for 0 < i < n, we see that πi(X) = 0 for i < n. When
n > 1, homotopy excision implies πn+1(X,Xn) = πn+1(X/Xn) =
πn+1(

∨
β en+1

β /∂en+1
β ) =

⊕
β Z. The LES for the pair (X, Xn) gives

the exact sequence

πn+1(X, Xn) =
⊕

β

Z −→ πn(Xn) =
⊕
α

Z −→ πn(X) −→ πn(X, Xn) = 0

So πn(X) =
⊕

α Z/{[ϕβ]} = G.
The space X in general has complicated higher homotopy groups.

We use an inductive procedure to add higher dimensional cells to
make πi vanish, without affecting lower dimensional homotopy groups.
Choose maps ϕα : Sn+1 → X representing the generators of πn+1(X),
and attach (n + 2)-cells en+2

α via ϕα’s. Let’s call the resulting space
X(n+1). By cellular approximation, πn+1(X(n+1)) = 0. Now we attach
(n+3)-cells in a similar way to get space X(n+2) with πn+2(X(n+2)) =
0, and so on. The direct limit under inclusion

Y = lim−→ X(n+k)
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is an Eilenberg-MacLane space K(G,n).

Step 3 - Uniqueness.
Given a CW complex K(G,n) space Z, we want to show that

there is a homotopy equivalence f : Y → Z where Y is the K(G,n)
constructed above. It suffices to construct a map f that induces iso-
morphisms on all homotopy groups.

First consider the n-skeleton Y n =
∨

α Sn
α. We get a map f :

Y n → Z whose restriction to each Sn
α represents the homotopy class

[Sn
α ↪→ Y ] ∈ πn(Y ) = G = πn(Z). It is clear that f defined this

way extends onto the (n+1)-skeleton of Y , since its composition with
the attaching maps are null-homotopic. It further extends to cells of
dimension≥ n + 2, since πi(Z) = 0 for i > n. This finishes the proof.
QED.

Having constructed general Eilenberg-MacLane spaces using CW
complexes, we now give an alternative construction using the classify-
ing spaces, which is a direct generalization of the previous construction
of K(G, 1).

Consider spaces En(G) = Gn+1, Bn(G) = Gn, regarded as collec-
tions of simplices. Define “face” and “degeneracy” operators on E∗(G)
by

d0(g1, · · · , gn+1) = (g2, · · · , gn+1),
di(g1, · · · , gn+1) = (g1, · · · , gi−1, gigi+1, gi+2, · · · , gn+1), 1 ≤ i ≤ n,

si(g1, · · · , gn+1) = (g1, · · · , gi−1, e, gi, · · · , gn+1), 0 ≤ i ≤ n.

And similarly on B∗(G), where the only difference is that we define

dn(g1, · · · , gn) = (g1, · · · , gn−1).

In a similar fashion, we can define face and degeneracy maps on the
standard simplices as

δi : ∆n−1 −→ ∆n, (t0, · · · , tn−1) 7→ (t0, · · · , ti−1, 0, ti, · · · , tn),
σi : ∆n+1 −→ ∆n, (t0, · · · , tn+1) 7→ (t0, · · · , ti−1, ti + ti+1, · · · , tn+1).

Consider the spaces

E(G) =
∞⊔

n=0

En(G)×∆n/ ∼,
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B(G) =
∞⊔

n=0

Bn(G)×∆n/ ∼ .

where the equivalence relation ∼ is defined by

(f, δiu) ∼ (di(f), u), (f, σiu) ∼ (si(f), u).

The map p∗ : E∗(G) → B∗(G) that projects En+1(G) onto its first n
coordinates induces a projection map

p : E(G) −→ B(G)

This is a fiber bundle with fiber being G. Its group action on the
simplices is given by

g : (g1, · · · , gn+1) −→ (g1, · · · , gn+1g)

As before E(G) is contractible. So by the LES of the fibration G →
E(G) → B(G), we have

πi+1(BG) ∼= πi(G), ∀ i ≥ 0.

The group multiplication G×G → G gives a group structure on B(G):

B(G)×B(G) ∼= B(G×G) −→ B(G)

We can iterate this procedure and get Bn(G). In our previous con-
struction of K(G, 1), we were treating G as a discrete group. If we
start out with a discrete Abelian group G, the Eilenberg-MacLane
spaces can be constructed as

K(G,n) = Bn(G).

3. Basic Properties of K(G,n) and some appli-
cations

Next we will give two proofs to the follwing fundamental result relating
Eilenberg-MacLane spaces to singular cohomology groups.

Theorem 2 Let G be an Abelian group, X be a CW complex. There
is a natural bijection

T : 〈X, K(G,n)〉 −→ Hn(X;G)
[f ] 7−→ f∗α

where α ∈ Hn(K(G,n);G) ∼= Hom(Hn(K;Z), G) is given by the in-
verse of Hurewitz isomorphism G = πn(K) → Hn(K;Z).
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Bare-handed Proof: Consider a homotopy class [f ] ∈ 〈X, K(G,n)〉,
with base-point preserving map f : X → K(G,n). Since πi(K) = 0
for i < n, the restriction of f onto the (n − 1)-skeleton Xn−1 is null-
homotopic. Without loss of generality, we can assume f maps Xn−1

to the basepoint in K(G,n). So we get

f : X/Xn−1 −→ K(G, n)

It induces the map on homotopy groups

f∗ : πn(X/Xn−1) −→ G

Via Hurewitz isomorphism (rather trivial in this case), we can regard
f∗ as an element of Hom(Hn(X/Xn−1), G) ∼= Hn(X/Xn−1; G). The
two groups are isomorphic since Hn−1 vanishes. It is not hard to see
that the image of f∗ under q∗ : Hn(X/Xn−1; G) → Hn(X; G) is just
f∗α.

We first prove the surjectivity of T . From the LES

· · · −→ Hn−1(Xn−1; G) −→δ Hn(X/Xn−1;G) −→q∗ Hn(X; G) −→ Hn(Xn−1; G) = 0

q∗ is surjective. So given γ ∈ Hn(X; G), we have ψ : πn(X/Xn−1) →
G, q∗ψ = γ. This in particular gives a map ψ̃ : πn(Xn/Xn−1) ∼=⊕

α Z → G. It can be realized from the mapping between spaces

g : Xn/Xn−1 −→ K(G,n)

We need to extend g to X. Since πi(K(G,n)) = 0 for i > n, it suffices
to extend g to Xn+1. Pick any (n + 1)-cell en+1

β with attaching map
ϕβ : ∂en+1

β → Xn. The map

g ◦ ϕβ : Sn → Xn/Xn−1 → K(G,n)

induces (g◦ϕβ)∗ : Hn(Sn) = Z → Hn(K(G,n)) = G. ϕβ represents an
n-dimensional homology class [ϕβ] in the image of Hn+1(Xn+1, Xn) →
Hn(Xn), or a class [ϕβ] ∈ Hn(Xn, Xn−1). It follows that (g ◦ ϕβ)∗ =
ψ̃([ϕβ]) = γ([ϕβ]) = 0. Hence g ◦ ϕβ is null-homotopic, extends onto
en+1
β . This proves the surjectivity of T .

From the above construction, it is clear that given ψ ∈ Hn(Xn/Xn−1; G),
the associated map X/Xn−1 → K(G,n) is unique up to homotopy,
therefore the preimage [f ] ∈ 〈X, K(G, n)〉 is unique. However given
γ ∈ Hn(X; G), we have different choices of ψ′ = ψ+δη, η ∈ Hn−1(Xn−1; G).
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They give rise to maps f, f ′ : X → K(G,n) that restrict to the con-
stant map on Xn−1. It remains to prove that f and f ′ are homotopic,
although not necessarily rel Xn−1. Again it suffices to prove that the
restriction of f and f ′ on Xn are homotopic. Without loss of gener-
ality, we can
1. consider simply f, f ′ : Xn/Xn−2 → K(G,n); (because a homotopy
is a map X× I → K, Xn−2 only affects the (n− 1)-skeleton of X× I)
2. assume η is represented by a generator of Hn−1(Xn−1, Xn−2;G).

Pick any n-cell en
α with attaching map ϕα : ∂en

α → Xn−1. Com-
posed with the cellular boundary map, we get

Hn(en
α/∂en

α) −→dα Hn−1(Sn−1
β )

where Sn−1
β is the sphere in Xn−1/Xn−2 dual to η, dα is the degree of

pβ ◦ ϕα : ∂en
α → Sn−1

β . We’ll first prove that the map g̃ representing
the preimage of δη is null-homotopic. As before we can assume that
g̃ is constant on Xn−1. Consider the map on the quotient space g :
Xn/Xn−1 =

∨
α Sα → K(G,n). Its restriction to each Sn

α represents
the element dαη ∈ G = πn(K(G,n)).

We claim that g̃ is null-homotopic. It suffices to show that the
restriction of g̃ at

g̃ : en
α ∪ pβ ◦ ϕα(∂en

α) −→ K(G,n)

is null-homotopic, for all en
α. Since pβ ◦ ϕα is of degree dα, and the

map on the quotient space represents dαη, the above map factorize as

(en
α ∪ pβ ◦ ϕα(∂en

α), pβ ◦ ϕα(∂en
α)) −→ (Bn, Sn−1) −→η K(G,n)

where the first map is constructed as follows. pβ ◦ ϕα is homotopy
equivalent to suspensions of S1 → S1, eiθ 7→ eidαθ. It can be trivially
extended onto the ball en

α, which induces the map on the quotient space
en
α ∪ pβ ◦ ϕα(∂en

α) → Bn. Now g̃ factorizes through Bn → K(G,n), it
is certainly null-homotopic.

We note that the homotopy classes of maps

en
α ∪ pβ ◦ ϕα(∂en

α) −→ K(G,n)

has a group structure, constructed in the same way as πn (if dα = 0 it
reduces to πn(K)). Now [f ′] = [f ]+ [g̃] = [f ], f and f ′ are homotopic.
This finishes proving the injectivity of T . QED.

The above bare handed proof is straightforward but not very illu-
minating. A more elegant proof follows directly from two lemmas:
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Lemma 1 The functor X → hn(X) = 〈X,K(G,n)〉 defines a reduces
cohomology theory on the category of base-pointed CW complexes.

Remark: the definition for hn(X) extends to n ≤ 0 by 〈X,K(G,n)〉 =
〈X,ΩkK(G,n + k)〉, where Ω is the loop space functor.

Lemma 2 If a reduced cohomology theory h∗ defined on CW com-
plexes has hn(S0) = 0 for n 6= 0, then there are natural isomorphisms

hn(X) ∼= H̃n(X; h0(S0))

for all CW complexes X and integer n.

The proof of lemma 2 is standard, which we will omit. We will
sketch the proof of lemma 1.
Proof of Lemma 1: First of all, if we take K(G,n) to be a CW
complex, there is a weak homotopy equivalence

K(G,n) → ΩK(G, n + 1)

This follows from the fact that for a space X, the loop space ΩX has
homotopy groups πn(ΩX) ∼= πn+1(X).

Secondly, there is an adjoint relation between the functor Ω and
reduced suspension Σ,

〈ΣX,K〉 = 〈X, ΩK〉
There is a natural group structure on 〈X, ΩK〉. In particular, there is
a group structure on 〈X, K(G,n)〉 since K(G,n) are weak homotopy
equivalent to loop spaces (the “weak” condition can be dropped, but
that’s unnecessary for our purpose).

Now we will show that hn(X) = 〈X, K(G,n)〉 defines a reduced
cohomology theory. To check the homotopy axiom and the wedge
sum axiom is trivial. We will do the more interesting one, the LES
associated to CW pair (X, A). First note the sequence of inclusion of
spaces

A ↪→ X ↪→ X∪CA ↪→ (X∪CA)∪CX ↪→ ((X∪CA)∪CX)∪C(X∪CA)
(1)

where CX is the cone over X. There are homotopy equivalences

X ∪ CA ' X/A,

(X ∪ CA) ∪ CX ' SA,

((X ∪ CA) ∪ CX) ∪ C(X ∪ CA) ' SX.
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By repeating the above sequence with A,X replaced by SA, SX, and
so on, we get a sequence of mappings

A → X → X ∪ CA → SA → SX → S(X ∪ CA) → S2A → · · ·

It is also homotopy equivalent to the sequence of reduced suspensions

A → X → X/A → ΣA → ΣX → Σ(X/A) → Σ2A → · · ·

For an arbitrary space K, this gives a sequence on the homotopy
classes of mappings

〈A,K〉 ← 〈X, K〉 ← 〈X/A,K〉 ← 〈ΣA, K〉 ← 〈ΣX, K〉 ← · · ·

It is interesting to note that in (1) each two consecutive maps are
obtained from the previous ones in the same fashion. So to check that
the above sequence is exact, it suffices to show that

〈X/A,K〉 = 〈X ∪ CA,K〉 → 〈X, K〉 → 〈A,K〉

is exact. This is equivalent to say that, a map f : X → K whose
restriction to A is null-homotopic extends to X ∪ CA → K, which is
clear.

Now take K = K(G,n) and use the adjoint relation 〈ΣX, K〉 =
〈X,ΩK〉, we get the desired LES for the pair (X,A). QED.

For later application we prove two very useful lemmas.

Lemma 3 (Postnikov Tower) For any CW complex X, there is a
sequence of fibrations

Yn → Yn−1 → · · · → Y2 → Y1 = K(π1(X), 1)

with the fiber of Yq → Yq−1 being K(πq(X), q); and commuting maps
fq : X → Yq such that the induced map (fq)∗ on πi are isomorphisms
for i ≤ q.

Proof: We first construct Yn by attaching cells of dimension≥ n + 2
to kill πi(X), for i ≥ n + 1, as in our construction of K(G,n). Then
by attaching cells of dimension ≥ n + 1 to Yn we can kill πn(Yn) too,
and call the resulting space Ỹn−1, and so on. So we have a sequence
of inclusion

Yn ⊂ Ỹn−1 ⊂ · · · ⊂ Ỹ1 = K(π1(X), 1)
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This is not quite a sequence of fibration. But up to homotopy we can
regard the inclusion Ỹq ↪→ Ỹq−1 as a fibration of the space of paths in
Ỹq−1 that starts in Ỹq, since the latter deformation retracts onto Ỹq.
So the above sequence of inclusion is up to homotopy a sequence of
fibration

Yn → Yn−1 → · · · → Y1 = K(π1(X), 1)

From the LES of the fiber bundle p : Yq → Yq−1 and the fact that
p induces isomorphisms on πi for i < q, we see that the fiber is
K(πq(X), q). QED.

Lemma 4 (Whitehead Tower) Let X be a CW complex. There is
a sequence of fibration

· · · → Xn → Xn−1 → · · · → X1 → X

where the fiber of Xn → Xn−1 is K(πn(X), n− 1), in particular X1 is
the universal cover of X. They satisfy πi(Xn) = 0 for all i ≤ n, and
the map Xn → X induces isomorphisms on πi for i > n.

Proof: This time we go backwards. Suppose we have Xn−1 with
πi(Xn−1) = 0 for i ≤ n − 1, let’s attach cells of dimension≥ n + 2
to kill πi(Xn−1) for i ≥ n + 1. The resulting space is K(πn(X), n) ⊃
Xn−1. Let Xn be the space of paths in K(πn(X), n) that start from
a basepoint and end in Xn−1. This is a fiber bundle over Xn−1, with
fiber homeomorphic to the loop space ΩK(πn(X), n) ' K(πn(X), n−
1). So we get a fibration

K(πn(X), n− 1) → Xn → Xn−1

It follows from the LES that πi(Xn) = πi(Xn−1) for all i ≥ n + 1, and
πi(Xn) = πi(Xn−1) = 0 for all i ≤ n − 2. The rest of the LES looks
like

0 → πn(Xn) → πn(Xn−1) −→∂ πn(X) → πn−1(Xn) → 0

The map ∂ : πn(X) → πn−1(K(πn(X), n − 1)) = πn(X) is an iso-
morphism, so πn−1(Xn) = πn(Xn) = 0. This shows that the Xn as
constructed satisfy the desired properties. QED.

We now prove the basic fact that the cohomology groups of Eilenberg-
MacLane spaces classify all cohomology operations. Let us recall that
a cohomology operation is a natural transformation Hm(X; G) →
Hn(X; H) defined for all spaces X and fixed G, H, m, n.
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Theorem 3 For fixed G,H, m, n, there is a bijection between all coho-
mology operations Θ : Hm(X; G) → Hn(X; H) and Hn(K(G,m);H),
given by Θ 7→ Θ(α), where α = T (1) ∈ Hm(K(G,m);G) as in theo-
rem 2.

Proof: First, by CW approximation we can assume X is a CW com-
plex. Given β ∈ Hm(X; G), it corresponds to a map ϕ : X → K(G,m)
with ϕ∗α = β. So

Θ(β) = Θ(ϕ∗α) = ϕ∗Θ(α)

This shows that Θ → Θ(α) is injective. Now take any γ ∈ Hn(K(G,m);H).
It corresponds to a map θ : K(G,m) → K(H,n), with θ∗α̃ = γ. θ
induces the map

Θ : 〈X, K(G,m)〉 = Hm(X;G) −→ 〈X, K(H,n)〉 = Hn(X;H)

Then
Θ(α) = θ∗(α̃) = γ

This proves the surjectivity. The naturality of Θ is clear. QED.

Application 1: By Hurewitz theorem H i(K(G,n);H) = 0 for all
i < n, and Hn(K(G,n);H) = Hom(G,H). It follows that cohomology
operations do not decrease in the dimension of the cohomology group,
and the only operations that preserve the dimensions are induced by
homomorphisms between the coefficient groups. A first nontrivial ex-
ample is the Steenrod square operation

Sqi : Hn(X;Z/2) −→ Hn+i(X;Z/2)

From theorem 3, we get nonzero cohomology classes of K(Z/2, n) by
repeatedly acting Sqi on the fundamental class α ∈ Hn(K(Z/2, n);Z/2).
In fact, the whole cohomology ring H∗(K(Z/2, n);Z/2) can be ob-
tained in this way. This means that one cannot essentially make new
mod 2 cohomology operations other than the Steenrod squares. We
will not attempt to prove this important fact.

Application 2: Expressed as the bases of fibrations of S∞, it is easy
to see that RP∞ is K(Z/2, 1), CP∞ is K(Z, 2). For CW complex X
it follows that there are isomorphisms

w1 : Vect1R(X) = 〈X,RP∞〉 −→ H1(X;Z/2)
c1 : Vect1C(X) = 〈X,CP∞〉 −→ H2(X;Z)
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where Vect1R,C(X) are the collections of homotopy classes of real and
complex line bundles over X. w1 is known as the first Stiefel-Whitney
class, and c1 is the first Chern class. We see that they completely
classify real and complex line bundles over CW complexes.

4. Cohomlogy of Eilenberg-MacLane Spaces

We first compute the rational cohomology rings H∗(K(Zp, n),Q) and
H∗(K(Z, n),Q). To do this we need to use the technique of spectral
sequence.

Theorem 4 (Leray) For a fibration F → X → B with B simply
connected, there is a spectral sequence {Ep,q

r , dr} that converges to
H∗(X;G) with

Ep,q
2 = Hp(B; Hq(F ; G)).

Namely we have coboundary maps dr : Ep,q
r → Ep+r,q−r+1

r , and Er+1 =
H(Er, dr). There is a filtration

Hn(X; G) = Fn
0 ⊃ Fn

1 ⊃ · · · ⊃ Fn
n ⊃ 0

such that each quotient Fn
p /Fn

p+1
∼= Ep,n−p∞ , where Ep,n−p∞ are the stable

groups of the sequence.

Let’s start with K(Zp, 1). It follows from the LES of homotopy groups
for the fiber bundle Zp → S∞ → L(∞, p) that the infinite dimensional
lens space L(∞, p) is K(Zp, 1). It has nonzero cohomlogy groups H0 =
Z and H2i = Zp for i ≥ 1. So in particular H∗(K(Zp, 1);Q) is Q at H0

and zero in other dimensions. We are going to prove inductively that
this is true for H∗(K(Zp, n);Q) with arbitrary n. Let us abbreviate
Kn = K(Zp, n).

Suppose H∗(Kn−1,Q) is Q at dimension 0 and vanishes otherwise.
Since Kn−1 is homotopic to the loop space of Kn, we get a fiber bundle

Kn−1 → PKn → Kn

where PX is the path space of X, always contractible. Then

Ep,q
2 = Hp(Kn; Hq(Kn−1)) =

{
Hp(Kn;Q), q = 0,
0, q > 0.
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We see that Ep,q
2 are already stable. Since PKn is contractible, Ep,q∞

is Q at E0,0∞ and vanishes for all other p, q’s. It follows that

H∗(K(Zp, n);Q) =

{
Q at dimension 0,
0 otherwise.

Now let’s turn to K(Z, n). We know that K(Z, 1) is S1 and K(Z, 2)
is CP∞. Their cohomology groups are free algebras on one generator
of dimension n (polynomial algebra for n even and exterior algebra
for n odd). We will prove inductively that this is true for all n. Again
we abbreviate K(Z, n) by Kn.

Suppose H∗(Kn−1,Q) is the free algebra on one generator of di-
mension n− 1. If n is even, then the only non-vanishing cohomology
group of Kn−1 are H0,Hn−1 ∼= Q. Let a be the generator for Hn−1,
then H∗(Kn−1;Q) = Q[a]/a2. So from the fibration Kn−1 → PKn →
Kn we get the spectral sequence {Ep,q

r , dr} with

Ep,q
2 = Hp(Kn;Hq(Kn−1)) =

{
Hp(Kn;Q), q = 0, n− 1,
0, otherwise.

We immediately see that Ep,q
2 = · · · = Ep,q

n , and Ep,q
n+1 = Ep,q∞ . Since

PKn is contractible, Ep,q∞ is Q at E0,0∞ and vanishes for other p, q’s.
In particular, it follows that Ei,0

n = 0 for 0 < i < n, which we already
know from Hurewitz theorem. Further, dn : E0,n−1

n → En,0
n is nonzero,

and dn(a) generates En,0
n = Hn(Kn;Q) ∼= Q. Now at the n-th column

we have En,n−1
n generated by dn(a)⊗a. It is mapped by dn to dn(a)2,

which generates E2n,0
n = H2n(Kn;Q), and so on. So we conclude that

H∗(Kn;Q) = Q[dn(a)] for n even, where dn(a) is a free generator.
If n is odd, by assumption H∗(Kn−1;Q) = Q[a] where a is an

(n−1)-dimensional generator. Compared with the above discussion for
n even, now dn(a) still generates En,0

n , but it follows that the map dn :
E

0,(i+1)(n−1)
n → E

n,i(n−1)
n is nonzero, in fact, an isomorphism for all i.

So dn : E
n,(i+1)(n−1)
n → E

2n,i(n−1)
n is zero, which further implies that

Ep,q
n+1’s already stabilize, and Ekn,0

n = 0 for k ≥ 2. We conclude that
H∗(Kn;Q) = Q[ε]/ε2 where ε = dn(a) is an n-dimensional generator.

To summarize, we found that

H∗(K(Z, n);Q) =

{
Q[a], a ∈ Hn, n even,
Q[a]/a2, a ∈ Hn, n odd.
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As a beautiful application of the cohomology of K(G,n)’s, we will
prove

Theorem 5
π4(S3) ∼= π5(S3) ∼= Z/2.

To do this, we’ll make use of the Whitehead tower for S3:

K(π4(S3), 3) → X4

↓
K(Z, 2) → X3

↓
S3

We have H4(X3) ∼= π4(X3) ∼= π4(S3) and H5(X4) ∼= π5(X4) ∼= π5(S3)
by the construction of Whitehead tower. To compute the cohomology
of X3, we consider the spectral sequence for the fibration CP∞ '
K(Z, 2) → X3 → S3. The table for Ep,q

2 = Ep,q
3 looks like

4 Za2 0 0 Za2x 0
3 0 0 0 0 0
2 Za 0 0 Zax 0
1 0 0 0 0 0
0 Z 0 0 Zx 0

0 1 2 3 4

Since H3(X3) = 0, d3(a) = x is the generator for E3,0
3 . So d3 : a2 7→

2ax, a3 7→ 3a2x. We see that the non-vanishing cohomology groups of
X3 are

H0(X3) = Z, H2k+1(X3) = Z/k for all k > 1.

In particular we learned that H4(X3) = Z/2, H6(X3) = Z/3. It
follows that π4(S3) = Z/2.

Next we look at the homology spectral sequence for K(π4(S3), 3) →
X4 → X3. To compute H5(X4) we first need to know the (co)homology
of K(π4(S3), 3) = K(Z/2, 3). For the fibration RP∞ ' K(Z/2, 1) →
PK(Z/2, 2) → K(Z/2, 2), it is not hard to determine the first few
terms of Ep,q

2 = Ep,q
3 to be

14



4 Z/2 0 Z/2 Z/2 Z/2
3 0 0 0 0 0
2 Z/2 0 Z/2 Z/2 Z/2
1 0 0 0 0 0 0 0
0 Z 0 0 Z/2 0 Z/4 Z/2

0 1 2 3 4 5 6

and read off the cohomology groups of K(Z/2, 2):

Hq(K(Z/2, 2);Z) = Z, 0, 0, Z/2, 0, Z/4, Z/2 for q = 0, · · · , 6.

Now one step further, for the fibration K(Z/2, 2) → PK(Z/2, 3) →
K(Z/2, 3), the table for Ep,q

2 is

5 Z/4 0 0 Z/2 Z/2 Z/2
4 0 0 0 0 0 0
3 Z/2 0 0 Z/2 Z/2 Z/2
2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 Z 0 0 0 Z/2 0 Z/2

0 1 2 3 4 5 6

from which we read off the cohomology of K(Z/2, 3):

Hq(K(Z/2, 3);Z) = Z, 0, 0, 0, Z/2, 0, Z/2 for q = 0, · · · , 6.

In particular we learned that H4(K(Z/2, 3)) = 0 and H5(K(Z/2, 3)) =
Z/2. This enables us to deduce the table for E2

p,q of the homology spec-
tral sequence of K(Z/2, 3) → X4 → X3:

5 Z/2 0 0 0 Z/2 Z/2 0
4 0 0 0 0 0 0 0
3 Z/2 0 0 0 Z/2 Z/2 0
2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 Z 0 0 0 Z/2 0 Z/3

0 1 2 3 4 5 6

Since H3(X4) = 0, d4 : Z/2 → Z/2 is an isomorphism, which verifies
π4(S3) = Z/2. On the other hand, d6 : Z/3 → Z/2 must be zero,
therefore π5(S3) ∼= H5(X4) = Z/2. This finishes the calculation.
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