
Basic Facts About Hilbert Space
The term Euclidean space refers to a finite dimensional linear space with an inner product.
A Euclidean space is always complete by virtue of the fact that it is finite dimensional (and
we are taking the scalars here to be the reals which have been constructed to be complete).
An infinite dimensional inner product space which is complete for the norm induced by the
inner product is called a Hilbert space. A Hilbert space is in many ways like a Euclidean
space (which is why finite dimensional intuituition often works in the infinite dimensional
Hilbert space setting) but there are some ways in which the infinite dimensionality leads to
subtle differences we need to be aware of.

Subspaces
A subset M of Hilbert space H is a subspace of it is closed under the operation of forming
linear combinations; i.e., for all x and y in M, C1x � C2y belongs to M for all scalars C1,C2.
The subspace M is said to be closed if it contains all its limit points; i.e., every sequence of
elements of M that is Cauchy for the H-norm, converges to an element of M. In a Euclidean
space every subspace is closed but in a Hilbert space this is not the case.

Examples-
(a) If U is a bounded open set in Rn then H � H0(U) is a Hilbert space containing M � C(U)
as a subspace. It is easy to find a sequence of functions in M that is Cauchy for the H norm
but the sequence converges to a function in H that is discontinuous and hence not in M.
This proves that M is not closed in H.
(b) Every finite dimensional subspace of a Hilbert space H is closed. For example, if M
denotes the span of finitely many elements x1, ... .xN in H, then the set M of all possible
linear combinations of these elements is finite dimensional (of dimension N), hence it is
closed in H.
(c) Let M denote a subspace of Hilbert space H and let M� denote the orthogonal
complement of M.

M� � �x � H : �x,y�H � 0,�y � M�

Then M� is easily seen to be a subspace and it is closed, whether or not M itself is closed.
To see this, suppose �xn� is a Cauchy sequence in M� converging to limit x in H. For
arbitrary y in M,

�x,y�H � �x � xn,y�H � �xn,y�H � �x � xn,y�H � 0 � 0, as n tends to infinity.

Then the limit point x is orthogonal to every y in M which is to say, x is in M�, and M� is
closed.

Lemma 1- Let M denote a subspace of Hilbert space H. Then �M��� � M� .
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If M is a subspace of H that is not closed, then M is contained in a closed subspace M� of H,
consisting of M together with all its limit points. M� is called the closure of M and M is said to
be dense in M� . This means that for every x in M� there is a sequence of elements of M that
converge to x in the norm of H. Equivalently, to say M is dense in M� means that for every x
in M� and every � � 0, there is a y in M such that �x � y�H � �.

Lemma 2 A subspace M of Hilbert space H is dense in H if and only if M� � �0�.

A Hilbert space H is said to be separable if H contains a countable dense subset {hn}. In
this case, for every x in H and every � � 0 there exists an integer N� and scalars {an} such
that

x ��n�1
N anhn H

� � for N � N�

If H is a separable Hilbert space, then the Gram-Schmidt procedure can be used to
construct an orthonormal basis for H out of a countable dense subset. An orthonormal
basis for H is a set of mutually orthogonal unit vectors, ��n� in H with the following property:

1) For f � H, (�n, f�H � 0 for every n if and only if f � 0

When the orthonormal set ��n� has property 1, then it is said to be dense or complete in
H. Of course, not every orthonormal set in H is complete. Other equivalent ways of
characterizing completeness for orthonormal sets can be stated as follows:

2) For all f in H and every � � 0, there exists an integer N�such that

f ��n�1
N

�f,�n�H�n H
� � for N � N�

3) For every f in H, �n�1
� fn2 � �f�H2 where fn � �f,�n�H

In a Euclidean space, E, where all subspaces M are closed, it is a fact that for each y in E
there is a unique z in M such that �y � z� is minimal. This element z, which is just the
orthogonal projection of y onto M, is the ”best approximation to y from within M”. In an
infinite dimensional Hilbert space, a similar result is true for closed subspaces but for
subspaces that are not closed there may fail to be a ”best” approximation in M.

Hilbert Space Projection Theorem Let M be a closed subspace of Hilbert space H and
let y in H be given. Then

(i) there exists a unique xy in M such that �y � xy�H � �y � z�H for all z in M
(xy is the unique point of M that is closest to y, the best approximation in M to y )

(ii) �y � xy, z�H � 0 for all z in M; i.e., y � xy � M
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(iii) every y in H can be uniquely expressed as y � xy � zy where
Py � xy � M, Qy � zy � M�

and �y�H2 � �Py�H2 � �Qy�H2 i.e., H � M � M�.

The proof of this result will be given later.

Linear Functionals and Bilinear Forms
A real valued function defined on H, is said to be a functional on H. The functional, L, is
said to be:

(a) Linear if, for all x and y in H, L�C1x � C2y� � C1Lx � C2Ly, for all scalars C1,C2.

(b) Bounded if there exists a constant C such that |Lx| � C�x�H for all x in H

(c) Continuous if �xn � x�H � 0 implies that |Lxn � Lx| � 0

It is not difficult to show that the only example of a linear functional on a Euclidean space E
is Lx � �x, z�E for some z in E, fixed. For example, if F is a linear functional on E, then for
arbitrary x in E,

F�x� � F �i�1
n xiē i � �i�1

n xiF�ē i� � �i�1
n xiFi � �x, zF�E � x�zF

where �ei� denotes the standard basis in E and z�F denotes the n-tuple whose i-th
component is Fi � F�ē i�. This displays the isomorphism between functionals F and
elements, zF, in E. This isomorphism also exists in an abstract Hilbert space.

Riesz Representation Theorem For every continuous linear functional f on Hilbert
space H there exists a unique element zf in H such that f�x� � �x, zf�H for all x in H.

Proof- Let Nf � �x � H : f�x� � 0�.Then Nf is easily seen to be a closed subspace of H. If
Nf � H then zf � 0 and we are done. If Nf � H then H � Nf � Nf� by the Hilbert space
projection theorem. Since Nf is not all of H, Nf� must contain nonzero vectors, and we
denote by z0 an element of Nf� such that �z0�H � 1. Then for any x in H,

w � f�x�z0 � f�z0�x

belongs to Nf hence w � z0. But in that case,

�f�x�z0 � f�z0�x, z0�H � f�x��z0, z0�H � f�z0��x, z0�H � 0.

This leads to, f�x� � f�z0��x, z0�H � �x, f�z0�z0�H which is to say zf � f�z0�z0.
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To see that zf is unique, suppose that f�x� � �zf,x�H � �wf,x�H for all x in H. Subtracting
leads to the result that �zf � wf,x�H � 0 for all x in H. In particular, choosing
x � zf � wf leads to ��zf � wf�H � 0. �

A real valued function a�x,y� defined on H � H is said to be:

(a) Bilinear if, for all x1,x2,y1,y2 � H and all scalars C1,C2

a�C1x1 � C2x2,y1� � C1a�x1,y1� � C2a�x2,y1�

a�x1,C1y1 � C2y2� � C1a�x1,y1� � C2a�x2,y1�

(b) Bounded if there exists a constant b � 0 such that,

|a�x,y�| � b�x�H�y�H for all x,y in H

(c) Continuous if xn � x, and yn � y in H, implies a�xn,yn� � a�x,y� in R

(d) Symmetric if a�x,y� � a�y,x� for all x,y in H

(e) Positive or coercive if there exists a C � 0 such that

a�x,x� � C�x�H2 for all x in H

It is not hard to show that for both linear functionals and bilinear forms, boundedness is
equivalent to continuity. If a(x,y) is a bilinear form on H � H, and F(x) is a linear functional
on H, then ��x� � a�x,x�/2 � F�x� � Const is called a quadratic functional on H. In a
Euclidean space a quadratic functional has a unique extreme point located at the point
where the gradient of the functional vanishes. This result generalizes to the infinite
dimensional situation.

Lemma 3 Suppose a�x,y� is a positive, bounded and symmetric bilinear form on Hilbert
space H, and F(x) is a bounded linear functional on H. Consider the following problems

(a) minimize ��x� � a�x,x�/2 � F�x� � Const over H

(b) find x in H satisfying a�x,y� � F�y� for all y in H.

Then
i) x in H solves (a) if and only if x solves (b)

ii) there is at most on x in H solving (a) and (b)
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iii) there is at least one x in H solving (a) and (b)

Proof- For t in R and x,y fixed in H, let f�t� � ��x � ty� . Then f(t) is a real valued function of
the real variable t and it follows from the symmetry of a�x,y� that

f�t� � t2/2 a�y,y� � t�a�x,y� � F�y���1/2 a�x,x� � F�x� � Const
and

f��t� � t a�y,y� � �a�x,y� � F�y��

It follows that ��x� has a global minimum at x in H if and only if f�t� has a global minimum at
t � 0; i.e.,

��x � ty� � ��x� � tf��0� � t2/2 a�x,x� � ��x�, �t � R and �y � H

if and only if
f��0� � a�x,y� � F�y� � 0. �y � H.

This establishes the equivalence of (a) and (b).

To show that ��x� has at most one minimum in H, suppose

a�x1,y� � F�y� and a�x2,y� � F�y� for all y in H.

Then a�x1,y� � a�x2,y� � a�x1 � x2,y� � 0 for all y in H. In particular, for y � x1 � x2

0 � a�x1 � x2,x1 � x2� � C�x1 � x2�H2 ; i.e., x1 � x2

To show that ��x� has at least one minimum in H, let � � infx�H��x�. Now

��x� � 1/2 a�x,x� � F�x� � 1/2 C�x�H2 � b�x�H

and it is evident that ��x� tends to infinity as �x�H tends to infinity. This means
� � �	 (i.e.,” the parabola opens upward rather than downward”). Moreover since � is an
infimum, there exists a sequence xn in H such that ��xn� � � as n tends to infinity. Note
that

2�a�xn,xn� � a�xm,xm��� a�xn � xm,xn � xm� � a�xm � xn,xm � xn�

which leads to the result,

��xm� � ��xn� � 1/4 a�xm � xn,xm � xn� � 2 ���xm � xn�/2�� 1/4C�xm � xn�H2 � 2�.
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But ��xm� � ��xn� tends to 2� as n tends to infinity and in view of the previous line, the
minimizing sequence �xn� must be a Cauchy sequence with limit x in the Hilbert space H.
Finally, since ��x� is continuous, ��xn� � ��x� � �.�

Applications of the lemma-
(i) This lemma can now be used to prove the Hilbert space projection theorem.
For M a closed subspace in H and for y a fixed but arbitrary element in H, note that

�x � y�H2 � �x � y,x � y�H � �x�H2 � 2�x,y�H � �y�H2 for all x in M.

Since M is closed in H, it follows that M is itself a Hilbert space for the norm and inner
product inherited from H.
Define

a�z,x� � �z,x�H for x and z in M,
F�z� � �y, z�H for z in M,

and ��z� � 1/2 a�z, z� � F�z� � 1/2�y�H2 for z in M

Clearly a�z,x� is a positive, bounded and symmetric bilinear form on M, F is a bounded
linear functional on M. Then it follows from the lemma that there exists a unique element
xy � M which minimizes ��z� over M. It follows also form the equivalence of problems (a)
and (b) that xy satisfies a(xy,z) � F(z), for all z in M; i.e., �xy, z�H � �y, z�H for all z in M. But
this is just the assertion that �xy � y, z�H � 0 for all z in M, that is, xy � y � M. Finally, for y
in H, fixed, let the unique element xy in M be denoted by Py � xy � M. Then

y � Py � M, and z � y � Py � M�.

To see that this decomposition of elements of H is unique, suppose

y � xy � z, xy � M, z � M�,
and y � Xy � Z, Xy � M, Z � M�,
Then

xy � z � Xy � Z, and xy � Xy � Z � z.

But xy � Xy � M, Z � z � M�, M 
 M� � �0�,
and it follows that xy � Xy � Z � z � 0.�

(ii) Recall that for U open and bounded in Rn, H01�U� � M, is a closed subspace of
H1�U� � H. Then by the projection theorem, every y in H can be uniquely expressed as a
sum, y � xy � z, with xy � M, and z � M�. To characterize the subspace M�, choose
arbitrary � � C0��U� and � � C��U� and write

��,��H � �
U
��� � �� 	 ���dx � �

U
��� � �2��dx � �

�U
��N�dS

� ��,� � �2��0 � 0. (Recall that �u,v�0 denotes the H0(U) inner product).
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Now suppose � � C��U� 
 M�. Then ��,��H � 0, for all � � C0��U�,and since C0��U� is
dense in M, �u,��H � 0, for all u in M. That is, �u,� � �2��0 � 0 for all u in M. But this
implies that � � C��U� 
 M� satisfies � � �2� � 0, in H0�U�. Then, since C��U� is dense in
H � H1�U� (cf. Theorem 2 pg 250 in the text) it follows that

M� � �z � H : z � �2z � H0�U�, and z � �2z � 0 �

The lemma requires that the bilinear form a�x,y� be symmetric. For application to existence
theorems for partial differential equations, this is an unacceptable restriction. Fortunately,
the most important part of the result remains true even when the form is not symmetric.

For A an n by n, not necessarily symmetric, but positive definite matrix, consider the
problem Ax � f. For any n by n matrix dimNA � dimNA� , and for A positive definite,
dimNA � 0,which is to say that the solution of Ax � f is unique if it exists. Since
Rn � RA � NA� , it follows that Rn � R, which is to say, a solution for Ax � f exists for every f
in Rn. The situation in an abstract Hilbert space H is very close to this.

Lax-Milgram Lemma- Suppose a(u,v) is a positive and bounded bilinear form on Hilbert
space H; i.e.,

|a�u,v�| � ��u�H�v�H �u,v � H
and

a�u,u� � ��u�H2 �u � H.

Suppose also that F�v� is a bounded linear functional on H. Then there exists a unique U in
H such that

a�U,v� � F�v� �v � H.

Proof- For each fixed u in H, the mapping v 
 a�u,v� is a bounded linear functional on H. It
follows that there exists a unique zu � H such that

a�u,v� � �zu,v�H �v � H.

Let Au � zu; i.e., a�u,v� � �Au,v�H �u � H. Clearly A is a linear mapping of H into H, and
since

�Au�H2 � |�Au,Au�H | � |a�u,Au�| � ��u�H�Au�H

it is evident that A is also bounded. Note further, that

��u�H2 � a�u,u� � �Au,u�H � �Au�H�u�H

i.e., ��u�H � �Au�H �u � H.
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This estimate implies that A is one-to one and that RA, the range of A, is closed in H.
Finally, we will show that RA � H. Since the range is closed, we can use the projection
theorem to write, H � RA � RA� . If u � RA� , then

0 � �Au,u�H � a�u,u� � ��u�H2 ; i.e., RA� � �0�.

Since F�v� is a bounded linear functional on H, it follows from the Riesz theorem that there
is a unique zF � H such that F�v� � �zF,v�H for all v in H. Then the equation
a�u,v� � F�v� can be expressed as

�Au,v�H � �zF,v�H �v � H; i.e., Au � zF.

But A has been seen to be one-to-one and onto and it follows that there exists a unique
U � H such that AU � zF.�

Convergence
In RN convergence of xn to x means

�xn � x�RN � �i�1
N
��xn � x� 	 ei�2

1/2
� 0 as n � 	.

Here ei denotes the i-th vector in the standard basis.This is equivalent to,

�xn � x� 	 ei � 0 as n � 	, for i � 1, ...,N,

and to �xn � x� 	 z � 0 as n � 	, for every z � RN

In an infinite dimensional Hilbert space H, convergence of xn to x means �xn � x�H � 0 as
n � 	. This is called strong convergence in H and it implies that

�xn � x,v�H � 0 as n � 	 �v � H.

This last mode of convergence is referred to as weak convergence and, in a general
Hilbert space, weak convergence does not imply strong convergence. Thus while there is
no distinction between weak and strong convergence in a finite dimensional space, the two
notions of convergence are not the same in a space of infinite dimensions.

In RN, a sequence �xn� is said to be bounded if there is a constant M such that |xn | � M for
all n. Then the Bolzano-Weierstrass theorem asserts that every bounded sequence �xn�
contains a convergent subsequence. To see why this is true, note that �xn 	 e1� is a
bounded sequence of real numbers and hence contains a subsequence �xn,1 	 e1� that is
convergent. Similarly, �xn,1 	 e2� is also a bounded sequence of real numbers and thus
contains a subsequence �xn,2 	 e2� that is convergent. Proceeding in this way, we can
generate a sequence of subsequences, �xn,k� � �xn� such that �xn,k 	 ej� is convergent for
j � k. Then the diagonal sequence �xn,n� is such that �xn,n 	 ej� is convergent for
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1 � j � N, which is to say, �xn,n� is convergent.

The analogue of this result in a Hilbert space is the following.

Lemma 4- Every bounded sequence in a separable Hilbert space contains a subsequence
that is weakly convergent.

Proof- Suppose that �xn� � M for all n and let ��j� denote a complete orthonormal family
in H. Proceeding as we did in RN, let �xn,k� � �xn� denote a subsequence such that
��xn,k,�j�H� is convergent (in R) for j � k. Then for each j, �xn,j,�j�H converges to a real
limit aj as n tends to infinity. It follows that the diagonal subsequence �xn,n� is such that
�xn,n,�j�H converges to aj for j � 1. Now define

F�v� � Limn �xn,n,v�H for v in H.

Then |F�v�| � |limn�xn,n,v�H | � M�v�H

from which it follows that F is a continuous linear functional on H. By the Riesz theorem,
there exists an element, zF in H such that F�v� � �zF,v�H for all v in H.

But F�v� � F � i�v,�i�H�i � limn�xn,n,� i�v,�i�H�i�H

� � i limn�xn,n,�i�H�v,�i�H � � i ai�v,�i�H ;

That is, F�v� � �zF,v�H � � i ai�v,�i�H for all v in H. Then by the
Parseval-Plancherel identity, it follows that

zF � � i ai�i
and

�xn,n,v�H � �zF,v�H for all v in H.�

We should point out that a sequence �xn� is H is said to be strongly bounded if there is an
M such that ||xn ||H � M for all n, and it is said to be weakly bounded if |�xn,v�H | � M for all
n and all v in H. These two notions of boundedness coincide in a Hilbert space so it is
sufficient to use the term bounded for either case.

Lemma 5- A sequence in a Hilbert space is weakly bounded if and only if it is strongly
bounded.
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