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Abstract. In this paper we discuss topological problems inspired by robotics. We study in detail
the robot motion planning problem. With any path-connected topological spaceX we associate
a numerical invariantTC(X) measuring the “complexity of the problem of navigation inX.” We
examine how the numberTC(X) determines the structure of motion planning algorithms, both
deterministic and random. We compute the invariantTC(X) in many interesting examples. In the
case of the real projective spaceRPn (wheren , 1, 3, 7) the numberTC(RPn) − 1 equals the
minimal dimension of the Euclidean space into whichRPn can be immersed.
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1. Introduction

This paper represents a slightly extended version of a mini-course consisting of
four lectures delivered at the Université de Montŕeal in June 2004. The main
goal was to give an introduction to the topological robotics and in particular
to describe a topological approach to the robot motion planning problem. This
new theory appears to be useful both in robotics and in topology. In robotics, it
explains how the instabilities in the robot motion planning algorithms depend on
the homotopy properties of the robot’s configuration space. In topology, if one
regards the topological spaces as configuration spaces of mechanical systems,
one discovers a new interesting homotopy invariantTC(X) which measures the
“navigational complexity” of X. The invariantTC(X) is similar in spirit to the
Lusternik – Schnirelmann category cat(X) although in factTC(X) and cat(X) are
independent, as simple examples (given below) show.

The topological approach to the robot motion planning problem was initiated
by the author in Farber (2003; 2004). It was inspired by the earlier well-known
work of Smale (1987) and Vassil′iev (1988) on the theory of topological complex-
ity of algorithms of solving polynomial equations. The approach of Farber (2003;
2004) was also based on the general theory of robot motion planning algorithms
described in the book of J.-C. Latombe (1991). It is my pleasure to acknowledge
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the importance of discussions of the initial versions of Farber (2003; 2004) with
Dan Halperin and Micha Sharir in summer 2001 in Tel Aviv. The theory of a genus
of a fiber space developed by Schwarz (1966) plays a technically important role
in our approach as well as in the work of Smale and Vassiliev.

Further developments and applications of the theory of topological complexity
of robot motion planning of Farber (2003; 2004) are also mentioned in these notes.
They include the study of collision free motion planning algorithms in Euclidean
spaces (Farber and Yuzvinsky, 2004) and on graphs (Farber, 2005) and also ap-
plications to the immersion problem for the real projective spaces (Farber et al.,
2003).

These notes also include some new material. We explain how one may con-
struct an explicit motion planning algorithm in the configuration space ofn dis-
tinct particles inRm having topological complexity≤ n2. Such an algorithm
may have some practical applications. We also analyze the complexity of con-
trolling many objects simultaneously. Finally we mention some interesting open
problems.

The plan of the lectures in Montreal was as follows:

Lecture 1 Introduction. Interesting topological spaces provided by robotics and
questions about the standard topological spaces one asks after encounters
with robotics.

Lecture 2 The notion of topological complexity of the motion planning problem.
The Schwarz genus. Computations of the topological complexity in basic
examples.

Lecture 3 Topological complexity of collision free motion planning of many par-
ticles in Euclidean spaces and on graphs.

Lecture 4 Motion planning in projective spaces. Relation with the immersion
problem for the real projective spaces. Discussion of open problems.

2. First examples of configuration spaces

The ultimate goal of robotics is creating of autonomous robots (Latombe, 1991).
Such robots should be able to accept high-level descriptions of tasks and execute
them without further human intervention. The input description specifieswhat
should be done and the robot decideshow to do it and performs the task. One
expects robots to have sensors and actuators.

A few words about history of robotics. The idea of robots goes back to ancient
times. The wordrobotwas first used in 1921 by Karel Capek in his play “Possum’s
Universal Robots.” The wordroboticswas coined by Isaac Asimov in 1940 in his
book “I, robot.”
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What is common to robotics and topology? Topology enters robotics through
the notion ofconfiguration space. Any mechanical systemR determines the vari-
ety of all its possible statesX which is called the configuration space ofR. Usually
a state of the system is fully determined by finitely many real parameters; in this
case the configuration spaceX can be viewed as a subset of the Euclidean space
Rk. Each point ofX represents a state of the system and different points repre-
sent different states. The configuration spacesX comes with the natural topology
(inherited fromRk) which reflects the technical limitations of the system.

Many problems of control theory can be solved knowing only the configura-
tion space of the system. Peculiarities in the behavior of the system can often be
explained by topological properties of the system’s configuration space. We will
discuss this in more detail in the case of the motion planning problem. We will
see howone may predict the character of instabilities of the behavior of the robot
knowing the cohomology algebra of its configuration space.

If the configuration space of the system is known one may often forget about
the system and study instead the configuration space viewed with its topology and
with some other geometric structures, e.g., with the Riemannian metric.

EXAMPLE 2.1 (Piano movers’ problem; Schwartz and Sharir, 1983). In Figure
1 the large rectangles represent the obstacles and the black figures represent dif-
ferent states of the “piano.”

We assume that the picture is planar, i.e., the objects move in the horizontal
plane only. Of course in practice the obstacles may have much more involved
geometry than it is shown on the picture. One has to move the piano from one
state to another avoiding the obstacles. The configuration space in this example is
3-dimensional having complicated geometry. The state of the piano is determined
by the coordinates of the center and by the orientation.

EXAMPLE 2.2 (The robot arm; Latombe, 1991). Schematically, the robot arm
consists of several bars connected by revolving joins (Figure 2). One distinguishes

Figure1.
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Figure2.

the spacial case and the planar case (when the bars lie in a single 2-dimensional
plane).

The configuration space in this example is

X = S1 × S1 × · · · × S1

(then-dimensional torus) in the planar case and it is

X = S2 × S2 × · · · × S2

in the spacial case. We allow the self-intersection of the arm. The space of all
configurations of the planar robot arm with no self-intersections is topologically
very much different: it is homotopy equivalent to a circle, see the recent work of
Connelly et al. (2003).

EXAMPLE 2.3 (The “usual” configuration spaces). LetY be a topological space
and letX = F(Y,n) denote the subset of the Cartesian productY × Y × · · · × Y
(n times) containing then-tuples (y1, y2, . . . , yn) with the property thatyi , y j for
i , j (Figure 3).

X = F(Y,n) is the configuration space of a system ofn particles moving in the
spaceY avoidingcollisions. The most interesting special cases areY = Rm (the
Euclidean space) and whenY is a connected graph.

The configuration spacesF(Rm,n) were introduced by Fadell and Neuwirth
(1962). Nowadays they are standard objects of topology. The configuration spaces
F(R2, n) and F(R2, n)/Σn appear in the theory of braids. In 1968 V. Arnol′d
used information about cohomology of the configuration spaces to study algebraic
functions.

Figure3.
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In robotics it is natural to study the configuration spacesF(Γ,n) whereΓ is a
graph. Such spaces describe several objects moving along a prescribed netΓ (say,
the factory floor) avoiding collisions, see Section 27.

3. Varieties of polygonal linkages

In this section we consider the configuration spaces of polygonal linkages. These
are remarkable manifolds which describe shapes of closed polygonal chains in
robotics; they also appear in many areas of mathematics. The varieties of polyg-
onal linkages carry a set of geometric structures; for example they are Kähler
and support several Hamiltonian circle actions. These varieties were studied by
Thurston (1987), Walker (1985), Klyachko (1994), Kapovich and Millson (1996),
and Hausmann and Knutson (1998). Our exposition mainly follows the work of
Klyachko (1994). We describe some basic facts about these varieties referring
the reader to the articles mentioned above for more complete information and for
proofs.

Fix a vectora ∈ Rm
+ , a = (a1, . . . ,am) consisting ofm positive real numbers

ai > 0. Define the varietyM(a) as follows

M(a) =

{
(z1, . . . , zm); zi ∈ S2,

m∑

i=1

aizi = 0
}/

SO3 .

Here SO3 acts diagonally on the productS2 × . . . × S2. M(a) is the variety of all
polygonal shapes inR3 having the given side lengths (Figure 4).

The first question is whetherM(a) in nonempty.

Figure4.
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Figure5.

LEMMA 3.1. M(a) , ∅ if and only if for anyi = 1, . . . ,m one hasai ≤ |a|/2,
where|a| = a1 + a2 + · · · + am.

This follows from the triangle inequality.

DEFINITION 3.2. Vectora ∈ Rm
+ is genericif the equation

∑m
i=1 εiai = 0 has no

solutions withεi = ±1.

Equivalently,a is generic if the varietyM(a) contains nolined configurations,
i.e., configurations with all the edges lying on a single line (Figure 5).

LEMMA 3.3. If a is generic thenM(a) is a closed smooth manifold of dimension
2(m− 3).

3.1. SHORT AND LONG SUBSETS

How does the varietyM(a) depend on the vectora? To answer this question we
need to introduce the notions ofshortandlongsubsets.

A subsetJ ⊂ {1,2, . . . ,m} is calledshort iff∑

i∈J
ai ≤

∑

j<J

a j

One element subsetsJ = {i} are always short assuming thatM(a) is nonempty.
S(a) will denote the set of all short subsets.S(a) is a partially ordered set, it is

determined by its maximal elements (since a subset of a short subset is short).

EXAMPLE 3.4. Leta = (1,1,1, 2). The maximal elements ofS(a) are:

{(12), (13), (23), {4}}.
LEMMA 3.5. Assume that the vectorsa,a′ ∈ Rm

+ are generic and such that the
posetsS(a) andS(a′) are isomorphic. ThenM(a) andM(a′) are diffeomorphic.

See Hausmann and Knutson (1998) for a proof.

3.2. POINCAŔE POLYNOMIAL OF M(A)

Klyachko (1994) found a remarkable formula for the Poincaré polynomial of
M(a).
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THEOREM 3.6. The Poincaré polynomial ofM(a) equals

P(t) =
1

t2(t2 − 1)

(
(1 + t2)m−1 −

∑

J∈S(a)

t2|J|
)

(1)

The proof uses the Morse theory, we shall sketch its main points.
Fix a pair of indicesi, j ∈ {1, . . . ,m} and consider the smooth functionH: M(a)

→ R given by
H = −‖aizi + a jzj‖2.

One may assume without loss of generality thatj = i + 1. ThenH is the negative
square of the length of a diagonal of a polygon (Figure 6).

The critical points ofH are of types (I), (II), (III) described in Figure 7. In the
case of critical points of type (I) one haszi = zj . For the type (II)zi = −zj . In the
case (III) all the sides of the polygon exceptzi andzj are lined up. The length of
the base of the triangle equals ∑

k,i, j

εkak. (2)

Clearly the critical points of types (I) and (II) form critical submanifolds which
are diffeomorphic to varieties of polygonal linkages with lower number of edges.

Critical points of type (III) are isolated.
The following Lemma describes the Morse indices:

LEMMA 3.7. The Morse – Bott index of the critical submanifold(I) is 0. The
Morse – Bott index of the critical submanifold(II) is 2. The Morse index of any
critical point of type(III) equals twice the number of minus signsεk appearing
in (2).

We refer to Klyachko (1994) and to Kapovich and Millson (1996) for a proof.
We only mention that the first statement concerning the type (I) critical points is

Figure6.
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(I) (II)

(III)

Figure7.

obvious: the diagonal is then the longestai + a j and therefore the functionH has
minimum.

Figure 8 shows why each minus signεk in the sum (2) gives a two-dimensional
family of deformations of the shape of the polygon decreasing (quadratically) the
value of the functionH.

LEMMA 3.8. H: M(a)→ R is a perfect Morse – Bott function.

Figure8.
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Figure9.

The proof of this statement uses the existence of a symplectic structure on the
manifold M(a) such that the functionH generates a Hamiltonian circle action.
The latter can be described geometrically as in Figure 9.

One bends the polygon along the specified diagonal. The fixed points of this
action are precisely the critical points ofH, i.e., the polygons of types (I), (II),
(III).

THEOREM 3.9 (Klyachko).Assume that the vectora ∈ Rm
+ is generic. Then

M(a) admits a symplectic structure such that the circle action described above is
Hamiltonian with the functionH as the Hamiltonian.

Perfectness of the functionH leads to the following recurrence relation for the
Poincaŕe polynomials. Denote

a+ = (a1, . . . , âi , . . . , â j , . . . ,am,ai + a j) ∈ Rm−1
+ ,

a− = (a1, . . . , âi , . . . , â j , . . . ,am, |ai − a j |) ∈ Rm−1
+ .

Here the hat above a symbol means that this symbol should be skipped. We obtain
(using the perfectness ofH) the following recurrence equation:

PM(a)(t) = PM(a+)(t) + t2PM(a−)(t) +
∑

|ai−a j |<∑
k,i, j εkak<ai+a j

t2nε ,

whereεk = ±1 andnε is the number of negativeεk. This relation leads eventually
to formula (1) for the Poincaré polynomial. The reader may find the continuation
of this beautiful story in (Klyachko, 1994).
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4. Universality theorems for configuration spaces

How special are configuration spaces of the mechanisms? In other words, we ask
if there exist specific topological properties which characterize the configuration
spaces among the topological spaces?

Universality theorems for configuration spaces claim (roughly) that all “rea-
sonable” topological spaces are configuration spaces of linkages. Many theorems
of this type are known. Lebesgue (1950) gave an account of several results includ-
ing Kempe’s universality theorem, not for the configuration space of the mecha-
nism itself but for the orbit of one of its vertices: “Toute courbe algébrique peut
être tracée à l’aide d’un système articulé.”

A theorem of Jordan and Steiner (1999) states:

THEOREM 4.1. Any compact real algebraic varietyV ⊂ Rn is homeomorphic
to a union of components of the configuration space of a mechanical linkage.

Kapovich and Millson (2002) prove the following statement:

THEOREM 4.2. For any smooth compact manifoldM there exists a linkage
whose moduli space is diffeomorphic to a disjoint union of a number of copies
of M.

Let us explain the terms used here. Anabstract linkageis a triple

L = (L, `,W)

whereL is a graph,W ⊂ V(L) is an ordered subset of vertices ofL, and`: E(L)→
R+ is a function on the set of edges ofL. HereW are thefixedvertices ofL and`
is a “metric” (length function) onL. A planar realizationof L is a map

φ: V(L)→ R2

such that if the verticesv,w ∈ V(L) are joined by an edgee ∈ E(L) in L then

|φ(v) − φ(w)| = `(e).

Let W = (v1, . . . , vn) and letZ = (z1, . . . , zn) be an ordered set ofn pointszi ∈ R2.
A planar realizationof L relative toZ is a realizationφ: V(L) → R2 as above
satisfying an additional requirement thatφ(v j) = zj for all j = 1, . . . ,n. The set
C(L,Z) of all relative planar realizations ofL is called therelative configuration
spaceof L. Elements ofC(L,Z) are all planar realizations ofL such that the
vertices ofW stay in the prescribed positionsZ.

The linkages which we studied in Section 3 are special cases when the graph
L is homeomorphic to the circle.
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Kapovich and Millson (2002) observe that the configuration space of any pla-
nar linkage admits an involution (induced by a reflection of the plane) and this
involution is nontrivial if the graphL is connected and the configuration space
is not a point. Hence ifMn is a closed manifoldn > 0 which does not admit a
nontrivial involution (such manifolds exist) thenM is not homeomorphic to the
moduli space of a planar linkage.

5. A remark about configuration spaces in robotics

The notion of configuration space may seem obvious and even trivial for a topol-
ogist. But for people in robotics it is not so. In fact in some problems of robotics
this notion appears to be even controversial. For a system of great complexity it is
unrealistic to assume that its configuration space can be described completely;
more reasonably to think that at any particular moment the topology and the
geometry of the configuration space are known only partially or approximately.

We want to emphasize that we do not question the existence of the configura-
tion spaces. However in some particular cases it may happen to be too expensive
to learn the topology of the configuration space entirely. Then one has to solve the
control problems “on-line” and to learn the underlying configuration space at the
same time.

It seems plausible that there may exist a better mathematical notion of a con-
figuration space describing a “partially known” topological space whose geometry
is being gradually revealed.

6. The motion planning problem

In this section we start studying the robot motion planning problem which is the
main topic of these lectures.

Imagine that you get into your advanced car and say “Go home!” and the car
takes you home, automatically, obeying the traffic rules. Such a car must have a
GPS (finding its current location) and a computer program suggesting a specific
route from any initial state to any desired state. Computer programs of this kind
are based onmotion planning algorithms. In general, given a mechanical system,
a motion planning algorithm is a function which assigns to any pair of states of
the system (i.e., the initial state and the desired state) a continuous motion of the
system starting at the initial state and ending at the desired state. A recent survey
of algorithmic motion planning can be found in Sharir (1997); see also Latombe
(1991).

Farber (2003; 2004) reveal the topological nature of the robot motion planning
problem. They show that the navigational complexity of configuration spaces,
TC(X), is a homotopy invariant quantity which can be studied using the algebraic
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Figure10.

topology tools. This theory explains how knowing the cohomology algebra of
configuration space of a robot one may predict instabilities of its behavior.

Below in this article we describe the results of Farber (2003; 2004) adding
some more recent developments.

Let X denote the configuration space of the mechanical system. Continuous
motions of the system are represented by continuous pathsγ: [0, 1]→ X. Here the
point A = γ(0) represents the initial state andγ(1) = B represents the final state of
the system (Figure 10).

Assume thatX is path-connected. Practically this means that one may fully
control the system and bring it to an arbitrary state from any given state. Denote
by PX the space of all continuous pathsγ: [0,1] → X. The spacePX is supplied
with the compact-open topology. Let

π: PX→ X × X

be the map which assigns to a pathγ the pair
(
γ(0), γ(1)

) ∈ X×X of the initial-final
configurations.π is a fibration in the sense of Serre.

DEFINITION 6.1. A motion planning algorithm is a section

s: X × X→ PX (3)

of fibrationπ, i.e.,
π ◦ s = 1X×X. (4)

The first question to ask is whether there exist motion planning algorithms
which are continuous? Continuity of a motion planning algorithms means that
the suggested routes(A, B) of going from A to B depends continuously on the
statesA andB.

LEMMA 6.2. A continuous motion planning algorithm inX exists if and only if
the spaceX is contractible.1

Proof. Let s: X × X → PX be a continuous MP algorithm. Here forA, B ∈
X the images(A, B) is a path starting atA and ending atB. Fix B = B0 ∈ X.
DefineF(x, t) = s(x, B0)(t). HereF: X × [0,1] → X is a continuous deformation
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Figure11.

with F(x,0) = x and F(x, 1) = B0 for any x ∈ X. This shows thatX must be
contractible.

Conversely, letX be contractible. Then there exists a deformationF: X × [0,1]
→ X collapsingX to a pointB0 ∈ X. One may connect any two given pointsA
andB by the concatenation of the pathF(A, t) and the inverse path toF(B, t). ¤

COROLLARY 6.3. For a system with noncontractible configuration space any
motion planning algorithm must be discontinuous.

We see that the motion planning algorithms appearing in real situations are
most likely discontinuous. Our main goal is to study thediscontinuitiesin these
algorithms. Having this goal in mind, with any path-connected topological space
X we associate a numerical invariantTC(X) measuring the complexity of the
problem of navigation inX. We give four different descriptions of how the num-
berTC(X) influences the structure of the motion planning algorithms inX. One
of these descriptions identifiesTC(X) with the minimal number of “continuous
rules” which are needed to describe a motion planning algorithm inX. On the
other hand the numberTC(X) equals the minimal “order of instability” of motion
planning algorithms inX. We will also recover the numberTC(X) while dealing
with therandom motion planning algorithmsin X.

Formally we act in a different way: we define four a priori distinct notions of
navigational complexity of topological spaces (which we denoteTC j(X), where
j = 1, 2, 3, 4) and we show thatTC i(X) = TC j(X) for “good” spacesX (for
example, for polyhedrons).

1 This result was first observed in Farber (2003).
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7. Tame motion planning algorithms

DEFINITION 7.1. A motion planning algorithms: X × X → PX is called tame
if X × X can be split into finitely many sets

X × X = F1 ∪ F2 ∪ F3 ∪ · · · ∪ Fk (5)

such that

1. s|Fi : Fi → PX is continuous,i = 1, . . . , k,

2. Fi ∩ F j = ∅, wherei , j,

3. EachFi is an Euclidean Neighborhood Retract (ENR).2

For a fixed pair of points (A, B) ∈ Fi , the curve produced by the algorithm
t 7→ s(A, B)(t) ∈ X is a continuous curve inX which starts at pointA ∈ X and ends
at pointB ∈ X. This curve depends continuously on (A, B) assuming that the pair
of points (A, B) varies in the setFi .

Recall the definition of ENR:

DEFINITION 7.2. A topological spaceX is called an ENR if it can be embedded
into an Euclidean spaceX ⊂ Rk such that for some open neighborhoodX ⊂ U ⊂
Rk there exists a retractionr: U → X, r |X = 1X.

All motion planning algorithms which appear in practice are tame. The con-
figuration spaceX is usually a semi-algebraic set and the setsF j ⊂ X × X are
given by equations and inequalities involving real algebraic functions; thus they
are semi-algebraic as well. In practical situations the functionss|F j : F j → PX are
real algebraic and hence they are continuous.

DEFINITION 7.3. The topological complexity of a tame motion planning algo-
rithm (3) is the minimal number of domains of continuityk in a representation of
type (5).

DEFINITION 7.4. The topological complexityTC1(X) of a path-connected
topological spaceX is the minimal topological complexity of motion planning
algorithms inX.

Observation.TC1(X) = 1 if and only if X is an ENR and it is contractible.

We setTC1(X) = ∞ if X admits no tame motion planning algorithms.

EXAMPLE 7.5. Let us show thatTC1(Sn) = 2 for n odd andTC1(Sn) ≤ 3 for
n even.



TOPOLOGY OF ROBOT MOTION PLANNING 209

Figure12.

Figure13.

Let F1 ⊂ Sn × Sn be the set of all pairs (A, B) such thatA , −B. We may
construct a continuous sections1: F1 → PSn by movingA toward B along the
shortest geodesic arc.

Consider now the setF2 ⊂ Sn × Sn consisting of all pairs antipodal (A,−A).
If n is odd we may construct a continuous sections2: F2→ PSn as follows. Fix a
nonvanishing tangent vector fieldv onSn. MoveA toward the antipodal point−A
along the semi-circle tangent to vectorv(A).

In the case whenn is even find a tangent vector fieldv with a single zero
A0 ∈ Sn. DefineF2 = {(A,−A); A , A0} and defines2: F2 → PSn as above. The
setF3 = {(A0,−A0)} consists of a single pair; defines3: F3 → PSn by choosing
an arbitrary path fromA0 to −A0.

8. The Schwarz genus

Let p: E→ B be a fibration. Its Schwartz genus is defined as the minimal number
k such that there exists an open cover of the baseB = U1∪U2∪ · · · ∪Uk with the
property that over each setU j ⊂ B there exists a continuous sectionsj : U j → E
of E → B. This notion was introduced by A. S. Schwarz in 1958. In 1987 –
1988 S. Smale and V. A. Vassiliev applied the notion of Schwarz genus to study
complexity of algorithms of solving polynomial equations.

2 An equivalent concept was introduced in Farber (2004) under the name “motion planner.”
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The genus of a fibration equals 1 if and only if it admits a continuous section.
The genus of the Serre fibrationP0X → X coincides with the Lusternik –

Schnirelmann category cat(X) of X, see Cornea et al. (2003). HereP0(X) is the
space of paths inX which start at the base pointx0 ∈ X. For the motion planning
problem we need to study a different fibrationπ: PX→ X × X.

9. The second notion of topological complexity

The invariantTC1(X) introduced above seems to be quite natural from the robotics
point of view. However a more convenient topological invariant uses open covers
instead of decompositions into ENR’s.

DEFINITION 9.1. Let X be a path-connected topological space. The number
TC2(X) is defined as the Schwartz genus of the fibration

π: PX→ X × X.

This notion coincides with the original definition of the topological complex-
ity of the robot motion planning problem given in Farber (2003).

Explicitly, TC2(X) is the minimal numberk such that there exists an open
cover

X × X = U1 ∪ U2 ∪ · · · ∪ Uk

with the property thatπ admits a continuous sectionsj : U j → PX over eachU j ⊂
X × X.

Note that the inclusionU j → X × X may be not null-homotopic. For exam-
ple, if X is a polyhedron, there always exists a continuous section over a small
neighborhood of the diagonalX ⊂ X × X.

We know thatTC2(X) = 1 if and only if X is contractible.

LEMMA 9.2. One has

cat(X) ≤ TC2(X) ≤ cat(X × X).
Proof. We shall use two following simple properties of the Schwartz genus.

Consider a fibrationE→ B.

1. Let B′ ⊂ B be a subset,E′ = p−1(B′). Then the genus ofE′ → B′ is less than
or equal to the genus ofE→ B.

2. The genus ofE→ B is less than or equal to cat(B).

To probe the lemma, apply 1 to the fibrationPX → X × X and to the subset
X × x0 ⊂ X × X. Note thatπ−1(X × x0) = P0X. We findTC2(X) ≥ cat(X).

2 givesTC2(X) ≤ cat(X × X). ¤

Exercise.Let G be a connected Lie group. Then

TC2(G) = cat(G).
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EXAMPLE 9.3. TC2
(
SO(3)

)
= cat

(
SO(3)

)
= cat(RP3) = 4.

This example is important for robotics since SO(3) is the configuration space
of a rigid body inR3 fixed at a point.

10. Homotopy invariance

THEOREM 10.1. The numberTC2(X) is a homotopy invariant ofX.

See Farber (2003) for a proof.

11. Order of instability of a motion planning algorithm

Let s: X × X→ PX be a tame motion planning algorithm and let

X × X = F1 ∪ F2 ∪ . . . ∪ Fk (6)

be a decomposition into domains of continuity as in Definition 7.1. HereFi∩F j =

∅ and eachF j is an ENR.

DEFINITION 11.1. Theorder of instability of the decomposition (6) is the
maximalr so that for some sequence of indices

1 ≤ i1 < i2 < · · · < ir ≤ k

the intersection
F i1 ∩ F i2 ∩ . . . ∩ F ir , ∅

in not empty. Theorder of instabilityof a motion planning algorithm3 s is the
minimal order of instability of decompositions (6) fors.

The order of instability is an important functional characteristic of a motion
planning algorithm. If the order of instability equalsr then for anyε > 0 there
existr pairs of initial-final configurations

(A1, B1), (A2, B2), . . . , (Ar , Br )

which are within distance< ε from one another and which lie in distinct setsFi .
This means that small perturbations of the input data (A, B) may lead tor

essentially distinct motions suggested by the motion planning algorithm.

DEFINITION 11.2. LetTC3(X) be defined as the minimal order of instability
of all tame motion planning algorithms inX.

3 This notion was introduced and studied in Farber (2004).
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Obviously one has:
TC3(X) ≤ TC1(X). (7)

12. Random motion planning algorithms

In this section we analyze complexity of random motion planning algorithms,
following Farber (2005).

Let X be a path-connected topological space.
A randomn-valued pathσ in X starting atA ∈ X and ending atB ∈ X is given

by an ordered sequence of pathsγ1, . . . , γn ∈ PX and an ordered sequence of real
numbersp1, . . . , pn ∈ [0, 1] such that eachγ j : [0,1] → X is a continuous path in
X starting atA = γ j(0) and ending atB = γ j(1), and

p j ≥ 0, p1 + p2 + · · · + pn = 1. (8)

One thinks of the pathsγ1, . . . , γn as being differentstatesof σ (Figure 15).
The numberp j is theprobability that the random pathσ is in stateγ j . Random

pathσ as above will be written as a formal linear combination

σ = p1γ1 + p2γ2 + · · · + pnγn.

Equality betweenn-valued random paths is understood as follows: the random
path

σ = p1γ1 + p2γ2 + · · · + pnγn.

is equal to
σ′ = p′1γ

′
1 + p′2γ

′
2 + · · · + p′nγ

′
n

iff p j = p′j for all j = 1, . . . ,n and, besides,γ j = γ′j for all indices j with p j , 0.
In other words, the pathγ j which appears with the zero probabilityp j = 0

could be replaced by any other path starting atA and ending atB.

Figure14.
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We denote byPnX the set of alln-valued random paths inX. The setPnX has
a natural topology: It is a factor-space of a subspace of the Cartesian product ofn
copies ofPX× [0,1].

The canonical map
π: PnX→ X × X (9)

assigning to a random path its initial and end points is continuous.

DEFINITION 12.1. Ann-valued random motion planning algorithmis defined
as a continuous section

s: X × X→ PnX. (10)

of fibration (9).

Given a pair (A, B) ∈ X × X (an input), the output of the random motion
planning algorithm (10) is an ordered probability distribution

s(A, B) = p1γ1 + · · · + pnγn (11)

supported onn paths betweenA andB. In other words, the algorithms produces
the motionγ j with probability p j where j = 1, . . . ,n.

Now we come to yet another notion of complexity of path-connected topolog-
ical spaces:

DEFINITION 12.2. LetTC4(X) be defined as the minimal integern such that
there exists ann-valued random motion planning algorithms: X × X→ PnX.

13. Equality theorem

THEOREM 13.1. Let X be a simplicial polyhedron. Then four notions of topo-
logical complexity introduced above coincide, i.e., one has

TC1(X) = TC2(X) = TC3(X) = TC4(X). (12)

Figure15.
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Proof.Let k denoteTC1(X) and lets: X×X→ PX be a tame motion planning
algorithm (as in Definition 7.1). We have a splittingX × X = F1 ∪ · · · ∪ Fk into
disjoint ENRs such that the restrictions|F j is continuous. Let us show that one
may enlarge each setF j to an open setU j ⊃ F j such that the sections|F j extends
to a continuous sections′j defined onU j . This would prove that

TC2(X) ≤ TC1(X). (13)

We will use the following property of the ENRs:If F ⊂ X and both spacesF
andX are ENRs then there is an open neighborhoodU ⊂ X of F and a retraction
r: U → F such that the inclusionj: U → X is homotopic toi ◦ r, wherei: F → X
denotes the inclusion. See Dold, (1972, Chapter 4, Section 8) for a proof.

Using the fact that the setsFi andX × X are ENRs, we find that there exists
an open neighborhoodUi ⊂ X × X of the setFi and a continuous homotopy
hi
τ: Ui → X×X, whereτ ∈ [0, 1], such thathi

0: Ui → X×X is the inclusion andhi
1

is a retraction ofUi ontoFi . We will describe now a continuous maps′i : Ui → PX
with E ◦ s′i = 1Ui . Given a pair (A, B) ∈ Ui , the pathhi

τ(A, B) in X × X is a pair
of paths (γ, δ), whereγ is a path inX starting at the pointγ(0) = A and ending
at a pointγ(1), andδ is a path inX starting atB = δ(0) and ending atδ(1). Note
that the pair

(
γ(1), δ(1)

)
belongs toFi ; therefore the motion plannersi : Fi → PX

defines a path
ξ = si

(
γ(1), δ(1)

) ∈ PX

connecting the pointsγ(1) andδ(1). Now we sets′i (A, B) to be the concatenation
of γ, ξ, andδ−1 (the reverse path ofδ):

s′i (A, B) = γ · ξ · δ−1.

Now we want to show thatX always admits a tame motion planning algorithm
(see Definition 7.1) with the number of local domainsF j equal to` = TC2(X).
This will show that

TC1(X) ≤ TC2(X). (14)

Let
U1 ∪ U2 ∪ · · · ∪ U` = X × X, where` = TC2(X), (15)

be an open cover such that for anyi = 1, . . . , ` there exists a continuous motion
planning mapsi : Ui → PX with π ◦ si = 1Ui . Find a piecewise linear partition
of unity { f1, . . . , f`} subordinate to the cover (15). Herefi : X × X → [0, 1] is a
piecewise linear function with support inUi and such that for any pair (A, B) ∈
X × X, it holds that

f1(A, B) + f2(A, B) + · · · + f`(A, B) = 1.
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Fix numbers 0< ci < 1 wherei = 1, . . . , ` with c1 + · · · + c` = 1. Let a subset
Vi ⊂ X× X, wherei = 1, . . . , `, be defined by the following system of inequalities

{
f j(A, B) < c j for all j < i,
fi(A, B) ≥ ci .

Then:

(a) eachVi is an ENR;

(b) Vi is contained inUi ; therefore, the sectionsi : Ui → PX restricts ontoVi and
defines a continuous section overVi ;

(c) the setsVi are pairwise disjoint,Vi ∩ V j = ∅ for i , j;

(d) V1 ∪ V2 ∪ · · · ∪ Vk = X × X.

Hence we see that the setsVi and the sectionssi |Vi define a tame motion
planning algorithm in the sense of Definition 7.1 with` = TC2(X) local domains.

Now we prove that
TC3(X) ≤ TC2(X). (16)

Suppose thats: X×X→ PX is a tame motion planning algorithm with domains of
continuityF1, . . . , Fk ⊂ X×X. Denote the order of instability of the decomposition
X × X = F1 ∪ · · · ∪ Fk by r ≤ k. Then any intersection of the form

F i1 ∩ · · · ∩ F ir+1 = ∅, (17)

is empty, where 1≤ i1 < i2 < · · · < ir+1 ≤ k. For any indexi = 1, . . . , k fix
a continuous functionfi : X × X → [0,1] such thatfi(A, B) = 1 if and only if
the pair (A, B) belongs toF i and such that the support supp(fi) retracts ontoFi .
Let φ: X × X → R be the maximum of (finitely many) functions of the form
fi1 + fi2 + · · · + fir+1 for all increasing sequences 1≤ i1 < i2 < · · · < ir+1 ≤ k of
lengthr + 1. We have:

φ(A, B) < r + 1

for any pair (A, B) ∈ X × X, as follows from (17).
Let Ui ⊂ X × X denote the set of all (A, B) such that

(r + 1) · fi(A, B) > φ(A, B).

Then Ui is open and containsF i , and hence the setsU1, . . . ,Uk form an open
cover ofX × X. On the other hand, any intersection

Ui1 ∩ Ui2 ∩ · · · ∩ Uir+1 = ∅

is empty.
As above we may assume that the setsU1, . . . ,Uk are small enough so that

over eachUi there exists a continuous motion planning section (here we use
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the assumption that eachFi is an ENR). Applying Lemma 13.2 (see below) we
conclude thatTC2(X) ≤ r.

Combining inequalities (7), (13), (14), (16) we obtainTC1(X) = TC2(X) =

TC3(X).
Next we show thatTC2(X) = TC4(X). This last argument is an adjustment of

the proof of Schwarz (1966, Proposition 2).
Assume that there exists ann-valued random motion planning algorithms: X×

X→ PnX in X. The right-hand side of formula (11) defines continuous real valued
functions p j : X × X → [0, 1], where j = 1, . . . ,n. Let U j denote the open set
p−1

j (0,1] ⊂ X × X. The setsU1, . . . ,Un form an open covering ofX × X. Setting
sj(A, B) = γ j , one gets a continuous mapsj : U j → PX with π ◦ si = 1U j . Hence,
n ≥ TC2(X) according to the definition ofTC2(X).

Conversely, settingk = TC2(X), we obtain that there exists an open cover
U1, . . . ,Uk ⊂ X×X and a sequence of continuous mapssi : Ui → PXwhereπ◦si =

1Ui , i = 1, . . . , k. Extendsi to an arbitrary (possibly discontinuous) mapping

Si : X × X→ PX

satisfyingπ ◦ Si = 1X×X. This can be done without any difficulty; it amounts in
making a choice of a connecting path for any pair of points (A, B) ∈ X×X−Ui . One
may find a continuous partition of unity subordinate to the open coverU1, . . . ,Uk.
It is a sequence of continuous functionsp1, . . . , pk: X × X → [0,1] such that for
any pair (A, B) ∈ X × X one has

p1(A, B) + p2(A, B) + · · · + pk(A, B) = 1

and the closure of the setp−1
i (0,1] is contained inUi . We obtain a continuousk-

valued random motion planning algorithms: X×X→ PnX given by the following
explicit formula

s(A, B) = p1(A, B)S1(A, B) + · · · + pk(A, B)Sk(A, B). (18)

The continuity ofs follows from the continuity of the mapsSi restricted to the
domainsp−1

i (0, 1]. This completes the proof. ¤

LEMMA 13.2. Let X be a path-connected metric space. Consider an open cover
X×X = U1∪U2∪ · · · ∪U` such that for anyi = 1, . . . , ` there exists a continuous
mapsi : Ui → PXwithπ◦si = 1Ui . Suppose that for some integerr any intersection

Ui1 ∩ Ui2 ∩ . . . ∩ Uir = ∅

is empty where1 ≤ i1 < i2 < · · · < ir ≤ `. ThenTC2(X) < r.

A proof of Lemma 13.2 can be found in Farber (2004).
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Although the numbersTC j(X) (where j = 1, 2, 3, 4) coincide whenX is
a simplicial polyhedron, they do not coincide whenX is a general topological
space. The most convenient notion topologically isTC2(X).

Notation.In what follows we will use the notationTC(X) = TC2(X).

14. An upper bound for TC(X)

THEOREM 14.1. For any path-connected paracompact locally contractible
spaceX one has

TC(X) ≤ 2 dimX + 1, (19)

wheredimX denotes the covering dimension ofX.
Proof. We know thatTC(X) ≤ cat(X × X). Combine this with cat(X × X) ≤

dim(X × X) + 1 = 2 dimX + 1. ¤

This result can be improved assuming thatX is highly connected:

THEOREM 14.2. If X is anr-connected CW-complex then

TC(X) <
2 · dimX + 1

r + 1
+ 1. (20)

See Farber (2004) for a proof.

15. A cohomological lower bound for TC(X)

In this section we describe a result from Farber (2003).
Let k be a field. The cohomologyH∗(X;k) = H∗(X) is a gradedk-algebra

with the multiplication

∪: H∗(X) ⊗ H∗(X)→ H∗(X)

given by the cup-product. The tensor productH∗(X) ⊗ H∗(X) is again a graded
k-algebra with the multiplication

(u1 ⊗ v1) · (u2 ⊗ v2) = (−1)|v1|·|u2|u1u2 ⊗ v1v2.

Here|v1| and|u2| denote the degrees of cohomology classesv1 andu2 correspond-
ingly. The cup-product∪ is an algebra homomorphism.

DEFINITION 15.1. The kernel of the homomorphism

∪: H∗(X) ⊗ H∗(X)→ H∗(X)

is called the ideal of the zero-divisors ofH∗(X). The zero-divisors-cup-length of
H∗(X) is the length of the longest nontrivial product in the ideal of the zero-
divisors ofH∗(X).
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THEOREM 15.2. TC(X) is greater than the zero-divisors-cup-length ofH∗(X).

See Farber (2003) for a proof.

16. Examples

EXAMPLE 16.1. Consider the caseX = Sn. Let u ∈ Hn(Sn) be the fundamental
class, and let 1∈ H0(Sn) be the unit. Then

a = 1⊗ u− u⊗ 1 ∈ H∗(Sn) ⊗ H∗(Sn)

is a zero-divisor. Another zero-divisor isb = u⊗ u. Computinga2 = a · a we find

a2 =
(
(−1)n−1 − 1

) · u⊗ u.

Hencea2 = −2b for n even anda2 = 0 for n odd.
We conclude:the zero-divisors-cup-length ofH∗(Sn;Q) equals1 for n odd

and 2 for n even. Applying Theorem 15.2 we find thatTC(Sn) ≥ 2 for n odd
andTC(Sn) ≥ 3 for n even. In Section 7 we constructed explicit motion planning
algorithms having topological complexity 2 forn odd and 3 forn even. Hence,

TC(Sn) =

{
2, if n is odd,
3, if n is even.

EXAMPLE 16.2. Here we calculate the numberTC(X) whenX is a graph.

THEOREM 16.3. If X is a connected finite graph then

TC(X) =


1, if b1(X) = 0,
2, if b1(X) = 1,
3, if b1(X) > 1.

Proof. If b1(X) = 0 thenX is contractible and henceTC(X) = 1. If b1(X) = 1
thenX is homotopy equivalent to the circle and thereforeTC(X) = TC(S1) = 2,
see above. Assume now thatb1(X) > 1. Then there exist two linearly independent
classesu1,u2 ∈ H1(X). Thus

1⊗ ui − ui ⊗ 1, i = 1,2

are zero-divisors and their product equalsu2 ⊗ u1 − u1 ⊗ u2 , 0 which implies
TC(X) ≥ 3. On the other hand, we know thatTC(X) ≤ 3 by Theorem 14.1. This
completes the proof. ¤

EXAMPLE 16.4. LetX = Σg be a compact orientable surface of genusg. Then

TC(X) =

{
3, if g ≤ 1,
5, if g > 1.

We leave the proof as an exercise.
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17. Simultaneous control of many systems

Suppose that we have to control two systems simultaneously. We assume that the
systems do not interact, i.e., the admissible states of one of the systems do not
depend on the state of the other. LetX andY be the corresponding configuration
spaces. If we view these two systems as a new single system then the configuration
space is the productX × Y. For the topological complexity of the product one has
the inequality:

THEOREM 17.1. TC(X × Y) ≤ TC(X) + TC(Y) − 1.

A proof can be found in Farber (2003).
Suppose now that one has to control simultaneouslyn systems having config-

uration spacesX1, . . . ,Xn. The total configuration space is the Cartesian product

Yn = X1 × X2 × . . . × Xn. (21)

We ask:What is the asymptotics of the topological complexityTC(Yn) for large
n?

We shall assume that the topological complexity of the spaceXn is bounded,
i.e., there exists a constantM ≥ 1 such thatTC(Xn) ≤ M for all n. Applying
Theorem 17.1 one obtains the inequality

TC(Yn) ≤ n · [M − 1] + 1. (22)

This shows that the sequenceTC(Yn) growths at most linearly.
Let us assume additionally that each spaceXn is path-connected andhomolog-

ically nontrivial, i.e.,H∗(Xn) , H∗(pt). Then one has

TC(Yn) ≥ n + 1. (23)
Proof.Let ur ∈ Hir (Xr ) be a nontrivial class, whereir > 0. Denote

wr = 1× 1× · · · × ur × 1× · · · × 1 ∈ Hir (Yn)

(hereur stands on ther-th place). Then

n∏

j=1

w j ∈ H∗(Yn)

is a nonzero class. The class

w j = w j ⊗ 1− 1⊗ w j , j = 1, . . . ,n

is a zero-divisor and the product

n∏

j=1

w j =

( n∏

j=1

w j

)
⊗ 1± . . . , 0
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is nonzero. This proves (22) as follows from the cohomological lower bound.¤

Combining the inequalities (22) and (23) one obtains:

COROLLARY 17.2. Assume that each spaceXr is path-connected and homolog-
ically nontrivial and the topological complexityTC(Xr ) is bounded above. Then
the topological complexity of the productYn (see(21)) (viewed as a function ofn)
has a linear growth. In particular, for any finite-dimensional path-connected and
homologically nontrivial polyhedronX the sequenceTC(Xn) as a function ofn
has a linear growth.

This result has an important implication in the control theory:

THEOREM 17.3. A centralized control byn identical independent systems has
topological complexity which is linear inn (more precisely, the inequalities(22)
and (23) are satisfied). The distributed control, i.e., when each of the objects is
controlled independently of the others, has an exponential topological complexity
TC(X)n.

We see that in practical situations the centralized control by many independent
objects could be organized so that its “much more stable” than the distributed
control.

18. Another inequality relating TC(X) to the usual category

The result of this section was inspired by a discussion with H.-J. Baues.
Consider the fibrationπ: PX→ X × X, cf. Definition 6.1.

LEMMA 18.1. Let U ⊂ X × X be a subset. There exists a continuous section
s: U → PX, π ◦ s = 1U of π over U if and only if the inclusionU → X × X is
homotopic to a map with values in the diagonal∆X ⊂ X × X.

Proof. Let s: U → PX be a section. Heres(A, B)(t) ∈ X is a continuous
function of A, B, t (where (A, B) ∈ U and t ∈ [0,1]) such thats(A, B)(0) = A
ands(A, B)(1) = B. Define

σ: U × [0,1]→ X × X

byσ(A, B)(t) = (s(A, B)(t), B). Then one hasσ(A, B)(0) = (A, B) andσ(A, B)(1) =

(B, B) takes values on the diagonal∆X. Henceσ is a homotopy between the
inclusionU → X × X and a map with values on the diagonal.

Conversely, suppose thatσt: U → X × X is a homotopy from the inclusion to
a map with values on the diagonal. Thent 7→ σt(A, B) is a path inX × X which
starts at (A, B) and ends at a point (C,C). In other words,σt(A, B) is a pair (γ1, γ2)
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of paths inX whereγ1 starts atA, γ2 starts atB, and the end points of these paths
coincide. Hence the paths = γ1γ

−1
2 ∈ PX is well-defined, continuously depends

on A and B and starts atA and ends atB. We obtain a continuous section ofπ
overU. ¤

COROLLARY 18.2. The topological complexityTC(X) is the smallestk such
that X×X can be covered byk open subsetsU1∪U2∪ · · · ∪Uk = X×X such that
eachU j → X×X is homotopic to a map with values in the diagonal∆X ⊂ X×X.

The following inequality complements Lemma 9.2.

LEMMA 18.3. If X is an ENR then

TC(X) ≥ cat
(
(X × X)/∆X

) − 1.
Proof. Let X × X = U1 ∪ U2 ∪ · · · ∪ Uk and eachUi → X × X is homotopic

to a map with values in∆(X). Let U′j = U j − ∆(X) andU′′j ⊂ (X × X)/∆(X) be
the image ofU′j under the canonical mapX × X → X × X/∆X. ThenU′′j is null-
homotopic and these sets cover the wholeX × X/∆X except the base point of the
factor-space. Hence, adding a contractible neighborhood of the base point gives
a categorical cover of the factor-space. Existence of such neighborhood follows
from the ENR assumption. This completes the proof. ¤

19. Topological complexity of bouquets

It is quite obvious that

TC(X ∨ Y) ≥ max{TC(X),TC(Y)}. (24)

We shall prove the following:

THEOREM 19.1. Let X andY be two polyhedrons. ThenTC(X ∨ Y) is less than
or equal to

max{TC(X),TC(Y), cat(X) + cat(Y) − 1}. (25)
Proof.The product (X ∨ Y) × (X ∨ Y) is a union of four spaces

X × X, Y× Y, X × Y, Y× X

and any two of these spaces intersect at a single point (p, p) wherep is the join
point of the wedgeX ∨ Y. Over each of these sets one may construct a motion
planning algorithm having respectively

TC(X), TC(Y), cat(X) + cat(Y) − 1, cat(X) + cat(Y) − 1
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domains of continuity. For example, the algorithm overX × Y takes pairs (x, y) ∈
X × Y as an input and finds a pathα in X connectingx with p, a pathβ in Y
connectingy with p and finally produces the pathαβ−1 as the output. To make
the choice ofα continuous one has to splitX into cat(X) pieces; to make the
choice ofβ continuous one splitsY into cat(Y) pieces. Similarly to the proof of the
product inequality (see Farber, 2003, Theorem 11) one may rearrange the totality
of cat(X) × cat(Y) products into cat(X) + cat(Y) − 1 sets (the checkerboard trick)
such that the algorithm is continuous over each of them.

The remaining arguments of the proof are similar (compare with the next
section), we leave them as an exercise for the reader. ¤

20. A general recipe to construct a motion planning algorithm

Let X be a path-connected polyhedron and letU = {U1,U2, . . . ,Un} be anice
open cover ofX with the property that each inclusionUi → X is null-homotopic.
The word “nice” means that the Main assumption (see below) is satisfied. Our
goal isto construct a motion planning algorithm inX with 2m− 1 local domains
wheremis the multiplicity of the coveringU, i.e., the maximal number of distinct
domainsU j having a nonempty intersection.

Introduce subsetsV1, V2, . . . ,Vm whereVr ⊂ X denotes the set of pointsx ∈ X
which are covered by preciselyr setsU j .

Main assumption.EachVi is an ENR.

For any multi-indexα = (1 ≤ i1 < i2 < · · · < ir ≤ n) denote

Uα =

r⋂

k=1

Uik.

Then
Vr =

⋃

|α|=r

Uα −
⋃

|α|=r+1

Uα. (26)

Note thatVr = ∅ for r > m.

LEMMA 20.1.

(A) Each setWα = Uα ∩ Vr (where|α| = r) is closed and open inVr .

(B) The setsWα andWβ are disjoint forα , β, |α| = r = |β|.
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Proof.Clearlyx ∈ Uα ∩Uβ implies thatx ∈ Uα∪β. This implies statement (B).
Now we want to show slightly more, namely, that the setsWα and Wβ are

disjoint for |α| = r = |β|, α , β. Indeed, if x ∈ Wα ∩ Wβ then x = lim xn

wherexn ∈ Wα. Sincex lies in Wβ one hasxn ∈ Wβ for all largen and hence
xn ∈ Uα∪β 1 Vr — a contradiction.

These two statements imply thatWα ∩ Vr = Wα i.e., Wα is closed inVr . As
follows from the definitionWα is also open inVr . ¤

LEMMA 20.2. One has
Vr ⊂

⋃

k≤r

Vk. (27)

Proof. It follows directly from (26). ¤

LEMMA 20.3. Over each setVr × Vr ′ ⊂ X × X one may construct an explicit
continuous section of the fibrationπ: PX→ X × X.

Proof. We know thatVr =
⋃
|α|=k Wα and eachWα is open and closed inVr .

Hence it is enough to construct a continuous section over eachWα ×Wβ. Let i and
j be the smallest indices appearing in the multi-indicesα andβ correspondingly.
Then Wα ⊂ Ui and Wβ ⊂ U j . Let Hi

t : Ui × I → X and H j
t : U j × I → X be

the homotopies contractingUi andU j to the base pointx0 ∈ X. Then, given a
pair (x, y) ∈ Wα × Wβ one constructs a path connecting them as follows: it is
concatenation of the pathHi

t(x) leading fromx to the base point and then follows
the reverse path toH j

t (y). ¤

Denote
Ak =

⋃

r+r ′=k+1

Vr × Vr ′ ⊂ X × X, (28)

wherek = 1, 2, . . . ,2m− 1. These sets are ENR’s (by the assumption) and cover
X × X.

LEMMA 20.4. Each productVr × Vr ′ , wherer + r ′ = k + 1, is closed and open
in Ak.

Proof. It follows from (20.2). ¤

Hence the described above local sections over eachVr × Vr ′ combine into a
continuous section overAk. In total, we have 2m− 1 local sections.

21. How difficult is to avoid collisions inRm?

In this section we start discussing the problem of finding the topological complex-
ity TC

(
F(Rm,n)

)
of the configuration spaceF(Rm,n) of n distinct points in the
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Euclidean spaceRm. A motion planning algorithm inF(Rm,n) takes as an input
two configurations ofn distinct points inRm and producesn continuous curves
A1(t), . . . ,An(t) ∈ Rm, wheret ∈ [0, 1], such thatAi(t) , A j(t) for all t ∈ [0,1],
i , j and

(
A1(0), . . . ,An(0)

)
and

(
A1(1), . . . ,An(1)

)
are the first and the second

given configurations. In other words, a motion planning algorithm inF(Rm,n)
moves one of the given configurations into another avoiding collisions.

The following theorem was obtained in Farber and Yuzvinsky (2004).

THEOREM 21.1. One has

TC(F(Rm,n)) =

{
2n− 1 for any oddm,
2n− 2 for m = 2.

At the moment we do not know the answer for the casem≥ 4 even. We know
that in this case the numberTC(F(Rm,n)) is either 2n− 1 or 2n− 2.

Conjecture. For anymeven one hasTC(F(Rm, n)) = 2n− 2.

We will give here some ideas of the proof of Theorem 21.1 referring the reader
to Farber and Yuzvinsky (2004) for details. We will also discuss the possible
approaches to construct explicit motion planning algorithms inF(Rm, n). Such
algorithms could be useful in situations when a large number of objects must be
moved automatically (without human intervention) from one position to another
avoiding collisions.

Consider the set

Hi j = {(y1, . . . , yn); yi ∈ Rm, yi = y j} ⊂ Rnm.

Herei, j ∈ {1, 2, . . . ,n}, i < j. The setHi j is a linear subspace ofRnm of codimen-
sionm. The system of subspaces{Hi j }i< j is an arrangement of linear subspaces of
codimensionm. Our approach to the problem is to view the union

H =
⋃

i< j

Hi j

as the set of obstacles:
F(Rm,n) = Rnm− H.

22. The casem = 2

Assume first thatm = 2. This means that we are dealing withn distinct particles
on the plane. ThenHi j ⊂ Cn is a complex subspace of codimension 1.
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Consider a slightly more general situation. LetA = {H} be a finite set of
hyperplanes in an affine complex spaceCn. Denote byM(A) the complement

M(A) = Cn −
⋃

H∈A
H.

We will study the motion planning problem inM(A). We may say that we live in
Cn and the union of hyperplanes

⋃
H represent our obstacles.

Recall some terminology from the theory of arrangements (Orlik and Terao,
1992). If

⋂
H∈A H , ∅ thenA is calledcentral, and up to change of coordinates

the hyperplanes can be assumed linear. Suppose thatA is linear. For eachH ∈ A
one can fix a linear functionalαH (unique up to a non-zero multiplicative constant)
such thatH = {αH = 0}. A set of hyperplanesHi ∈ A is calledlinear independent
if the corresponding functionalsαHi are linearly independent. The rank of{αH},
i.e., the cardinality of a maximal independent subset, is called therank of A
and denoted by rk(A). Clearly rk(A) ≤ n and the equality occurs if and only
if

⋂
H H = 0.
If A is not central we define its rank as the rank of a maximal central subar-

rangement ofA.
While dealing with the arrangement complements we will need the following

nontrivial result (Orlik and Terao, 1992):if A is an arbitrary arrangement of
rank r then the complementM(A) has homotopy type of a simplicial complex of
dimensionr.

Note that the rank of the braid arrangement{Hi j }i< j in Cn equalsn− 1.

COROLLARY 22.1. The configuration spaceF(C,n) has homotopy type of a
simplicial complex of dimensionn− 1.

Combining this with Theorems 10.1 and 14.1 we obtain:

COROLLARY 22.2. TC
(
F(C,n)

) ≤ 2n− 1.

This result can be improved:

THEOREM 22.3. LetA be a central complex hyperplane arrangement of rank
r. Then the topological complexity of the complementM(A) is less or equal than
2r. In particular one hasTC

(
F(C, n)

) ≤ 2n− 2.
Proof.LetA be{H1, . . . ,H`} ⊂ Cn. Let H∗1 be a parallel copy ofH1 which is

disjoint fromH1. Then the intersections

Hi ∩ H∗1, i = 2, 3, . . . , `

form a (in general, non-central) hyperplane arrangementA∗ in H∗1 ' Cn−1 of rank
r − 1. There is a principalC∗-fibrationM(A)→ M(A∗). The inclusionM(A∗) ⊂
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M(A) is a section of it. Hence the fibration is trivialM(A) ' M(A∗) × C∗ and
using the product inequality (see Theorem 17.1) we find

TC(M(A)) ≤ TC(M(A∗)) + TC(C∗) − 1

≤ [2(r − 1) + 1] + 2− 1 = 2r. ¤

The opposite inequality requires an additional geometric property of the ar-
rangement:

THEOREM 22.4. LetA be a complex central hyperplane arrangement of rank
r. Assume that there exist2r − 1 hyperplanesH1,H2, . . . ,H2r−1 such thatH1,
H2, . . . ,Hr are independent and for any1 ≤ j ≤ r the hyperplanesH j , Hr+1,
Hr+2, . . . ,H2r−1 are independent. Then one hasTC

(
M(A)

) ≥ 2r.

The proof (see Farber and Yuzvinsky, 2004) uses the cohomological lower
bound for the topological complexity and combinatorics of Orlik – Solomon alge-
bras.

EXAMPLE 22.5. Consider the braid arrangement{Hi j }i< j ⊂ Cn. Herer = n− 1
and 2r − 1 = 2n− 3. We have 2n− 3 hyperplanes:

H12,H13, . . . ,H1n,H23,H24, . . . ,H2n

satisfying the condition of the above theorem.

COROLLARY 22.6. One hasTC
(
F(R2, n)

)
= 2n− 2.

23. TC
(
F(Rm, n)

)
in the casem ≥ 3 odd

Assume thatm ≥ 3 is odd. ThenF(Rm,n) is (m− 2)-connected and in particular
it is simply connected. Its cohomology algebra is generated by the cohomology
classes

ei j ∈ Hm−1(F(Rm, n)
)
, i , j

which arise as follows. Consider the map

φi j : F(Rm, n)→ Sm−1, (y1, y2, . . . , yn) 7→ yi − y j

|yi − y j | ∈ Sm−1.

Then
ei j = φ∗i j [S

m−1]

where [Sm−1] is the fundamental class of the sphereSm−1.
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The cohomology classesei j satisfy the following relations:

e2
i j = 0, and ei j ejk + ejkeki + ekiei j = 0 (29)

for any triple i, j, k. It follows that a productei1 j1ei2 j2 · · · eik jk is nonzero if and
only if the subgraph of the full graph on vertices{1,2, . . . ,n} having the edges
(ir , jr ) contains no cycles.

Hence form ≥ 3 the configuration spaceF(Rm,n) has homotopy type of a
polyhedron of dimension≤ (n− 1)(m− 1). Since it is (m− 2)-connected we may
use inequality (20) of Theorem 14.2 to find

TC(F(Rm, n)) <
2(n− 1)(m− 1) + 1

m− 1
+ 1 = 2n− 1 +

1
m− 1

.

We obtain:

COROLLARY 23.1. TC
(
F(Rm, n)

) ≤ 2n− 1.

We want to show that an equality holds in Corollary!23.1. We shall use the
cohomological lower bound (see Theorem 15.2). Set ¯ei j = 1⊗ ei j − ei j ⊗ 1. It is a
zero-divisor of the cohomology algebra. Note that (¯ei j )2 = −2 · ei j ⊗ ei j , 0. Here
we use the assumption thatm is odd.

Consider the following product

π =

n∏

i=2

(ē1i)
2 ∈ A⊗ A.

We findπ = (−2)n−1m⊗m, where

m =

n∏

i=2

e1i .

The monomialm, 0 is nonzero and hence the productπ is nonzero.
Using the cohomological lower bound for the topological complexity we ob-

tain the opposite inequalityTC(M) ≥ 2n− 1. This completes the proof of Theo-
rem 21.1 in the casem≥ 3 odd.

24. Shade

Let X ⊂ Rn be a closed subset with connected complementRn − X. Our purpose
is to find (or to estimate) the numberTC(Rn − X). Our main motivation is the
special case whenX = ∪H is the union of finitely many affine subspaces.
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DEFINITION 24.1. Letv ∈ Sn−1 be a unit vector. Theshadeof X in the direction
of v is defined as

Shadev(X) = {x + λv; x ∈ X, λ ∈ R+}. (30)

In other words we assume that the light illuminating the space arrives from
direction of vectorv and thatX is not transparent. Then Shadev(X) is precisely the
shaded parts of the space.

Assume thatX ⊂ Rn satisfies the following condition:For any pointp ∈ Rn

and for any generic unit vectorv ∈ Sn−1 the distance

dist(p− λv,X)→ +∞ (31)

tends to+∞ asλ tends to+∞.
This condition is satisfied in two cases which are particularly important for us:

when eitherX is compact orX is a union of finitely many affine subspaces. IfX
is a union of finitely many affine subspaces then the condition above is satisfied
assuming that the vectorv is not parallel to any of the subspaces.

LEMMA 24.2. If (31) is satisfied then for a generic nonzerov ∈ Rn the distance

dist
(
p− λv,Shadev(X)

)

tends to+∞ asλ→ +∞.

LEMMA 24.3. If (31) is satisfied then for a generic nonzero vectorv the com-
plement of the shadeRn − Shadev(X) is contractible.

Proof. We will show that any compact setK ⊂ Rn − Shadev(X) is null-
homotopic in the complementRn − Shadev(X). Assume thatK is contained in
a ball with centerp ∈ Rn and radiusA > 0. Using Lemma 24.2 findλA such
that the distance between Shadev(X) andp− λAv is greater thanA. The homotopy
ht : K → Rn − Shadev(X), t ∈ [0, 1], whereht(x) = x− λtv, takesK into the ball
with centerp − λAv of radiusA which is disjoint from Shadev(X) and hence the
imageh1(K) can be contracted to a point in this ball. ¤

Figure16.
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DEFINITION 24.4. LetX ⊂ Rn be a closed subset satisfying (31). The shading
dimension ofX is defined as the smallestr such that there exist unit vectors
v1, . . . , vr+1 such that the intersection

r+1⋂

i=1

Shadevi (X) = X (32)

equalsX. Equivalently,r + 1 is the minimal number of projectors (placed at
infinity) needed to illuminate the spaceRn − X.

EXAMPLE 24.5. LetX ⊂ Rn be a finite setX = {p1, . . . , pm} then its shading
dimension is 1. Indeed, choose a generic unit vectoru ∈ Sn−1 such that no line
throughpi andp j has directionu. Thenu and−u are two directions such that the
intersection of their shades equalsX. Any line inRn in the direction ofu intersects
X in at most one point and hence the unit vectorsu and−u illuminate the whole
complementRn − X.

THEOREM 24.6. If X ⊂ Rn is closed subset satisfying(31) then for the topolog-
ical complexity of the complementTC(Rn − X) one has

TC(Rn − X) ≤ 2r + 1

wherer is the shading dimension ofX. Moreover, using the discussion of Sec-
tion 20one obtains an explicit motion planning algorithm inRn−X with ≤ 2r +1
local rules.

Proof. It follows from the results described above, since

Rn − X =

r+1⋃

i=1

(
Rn − Shadevi (X)

)

and each termRn − Shadevi (X) is contractible. ¤

25. Illuminating the complement of the braid arrangement

Considern particles inRm which are disjoint from each other. In this case the
obstacle setX ∈ Rm×Rm× · · · ×Rm = Rmn is

X =
⋃

i< j

Hi j

whereHi j is the linear subspacezi = zj , i.e., the particle numberi collides with
the particle numberj.
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Let e ∈ Rm be a fixed unit vector. Let

v = (0,e, 2e, . . . , (n− 1)e) ∈ Rnm.

We will consider the shade ofX in the direction ofv. First note thatv is generic,
i.e., it is not parallel to any of the subspacesHi j .

Let z ∈ Rm be a point. Itstail is defined as the setT(z) = {z− λe; λ ≥ 0}.
LEMMA 25.1. The shadeShadev(X) ⊂ Rnm coincides with the set of all config-
urations(z1, z2, . . . , zn) ∈ Rnm, wherezi ∈ Rm, such that

zi ∈ T(zj) for at least one pairi < j. (33)
Proof. Consider a configuration (z1, z2, . . . , zn) ∈ X. Assume that it lies in

Hi j , i.e., zi = zj where i < j. Then the current configuration of the shade is
(z′1, z

′
2, . . . , z

′
n) wherez′i = zi + (i−1)λe. We see thatz′j −z′i = ( j− i)λewhich means

thatz′i lies in the tail ofz′j , i.e.,z′i ∈ T(z′j).
Conversely, suppose now that we are given a configurationz = (z1, z2, . . . , zn)

such thatzi ∈ T(zj) for somei < j. Thenzj = zi + ( j − i)λe for someλ > 0. We
see that the configurationz′ = (z′1, z

′
2, . . . , z

′
n) wherez′r = zr − (r − 1)λe, lies inHi j

and hencez lies in the shade ofz′ in the direction of vectorv. ¤

Note that the complement of the described set in the configuration space is
indeed contractible (in accordance with Lemma 24.3). Since we have

zi < T(zj) for all i < j,

one may first move the pointzn far enough in the direction of vector−e, there will
be no obstacles. Then one moves the pointzn−1 again in the direction of−e also
far, but closer thanzn. And so on: each next point is moved not that far so that the
points after the motion lie in different slices ofRm (no interactions).

26. A quadratic motion planning algorithm in F(Rm, n)

Combining the general recipe for constructing motion planning algorithms de-
scribed in Section 20 with Theorem 24.6 and the results of Section 25, one may

Figure17.



TOPOLOGY OF ROBOT MOTION PLANNING 231

construct an explicit motion planning algorithm with≤ n2 local rules wheren is
the number of particles. In this section we briefly explain how such algorithm can
be built.

Fix distinct unit vectorse1, e2, . . . ,eN ∈ Rm, where

N =
n(n− 1)

2
+ 1.

Then for any configurationz = (z1, . . . , zn) ∈ F(Rm, n) wherezi , zj , zi ∈ Rm,
there exists 1≤ r ≤ N such that the vectorer (one of theN fixed unit vectors) is
distinct from all vectors

zi − zj

|zi − zj | , for all i < j.

Therefore the configurationz lies in the complement of the shade

Rnm− Shadeer (X).

HenceN contractible setsRnm − Shadeer (X), where r = 1, . . . ,N, cover the
complementRnm − X. By the construction of Section 20 this leads to a motion
planning algorithm with

2N − 1 = n2 − n + 1

local rules.

27. Configuration spaces of graphs

Here we will discuss the configuration spacesF(Γ, n) whereΓ is a connected
graph. These spaces were studied by Ghrist (2001), Ghrist and Koditschek (2002)
and Abrams (2002); see also Gal (2001),Świa↪tkowski (2001). To illustrate the
importance of these configuration spaces for robotics one may mention the control
problems where a number of automated guided vehicles (AGV) have to move
along a network of floor wires. The motion of the vehicles must be safe: it should
be organized so that the collisions do not occur. Ifn is the number of AGV then
the natural configuration space of this problem isF(Γ,n) whereΓ is a graph.

The first question to ask is whether the configuration spaceF(Γ, n) is con-
nected. ClearlyF(Γ,n) is disconnected ifΓ = [0,1] is a closed interval (andn ≥ 2)
or if Γ = S1 is the circle andn ≥ 3. These are the only examples of this kind as
the following simple lemma claims:

LEMMA 27.1. Let Γ be a connected finite graph having at least one essential
vertex. Then the configuration spaceF(Γ, n) is connected.

An essential vertex is a vertex which is incident to 3 or more edges.
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Figure18.

THEOREM 27.2. Let Γ be a connected graph having an essential vertex. Then
the topological complexity ofF(Γ, n) satisfies

TC
(
F(Γ,n)

) ≤ 2m(Γ) + 1, (34)

wherem(Γ) denotes the number of essential vertices inΓ.

A proof can be found in Farber (2005).

THEOREM 27.3. Let Γ be a tree having an essential vertex. Letn be an integer
satisfyingn ≥ 2m(Γ) wherem(Γ) denotes the number of essential vertices ofΓ. In
the casen = 2 we will additionally assume that the treeΓ is not homeomorphic
to the letterY viewed as a subset of the planeR2. Then the upper bound(34) is
exact, i.e.,

TC
(
F(Γ,n)

)
= 2m(Γ) + 1. (35)

Farber (2005) contains a sketch of the proof and also an explicit description of
a motion planning algorithm inF(Γ,n) (assuming thatΓ is a tree) having precisely
2m(Γ) + 1 domains of continuity.

If Γ is homeomorphic to the letterY thenm(Γ) = 1 andF(Γ, 2) is homotopy
equivalent to the circleS1. Hence in this caseTC(F(Γ,2)) = 2. The equality (35)
fails in this case.

For any treeΓ one hasTC
(
F(Γ,2)

)
= 3 assuming thatΓ is not homeomorphic

to the letterY. This shows that the assumptionn ≥ 2m(Γ) of Theorem 27.3 cannot
be removed: ifΓ is a tree withm(Γ) ≥ 2 then the inequality above would give
TC

(
F(Γ,2)

)
= 2m(Γ) + 1 ≥ 5.

Here are more examples. For the graphs K5 and K3,3 (Figure 18) one has

TC
(
F(K5,2)

)
= TC

(
F(K3,3,2)

)
= 5. (36)

In these examples the equality (35) is violated.

28. Motion planning in projective spaces

Next we consider the problem of computing the topological complexity of the
real projective spaces. We will follow Farber et al. (2003) which shows that the
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Figure19.

problem of computing the numberTC(RPn) is equivalent to a classical problem
of manifold topology which asks what is the minimal dimension of the Euclidean
spaceN such that there exists an immersionRPn → RN. The immersion prob-
lem for the real projective spaces was studied by many people and a variety of
important results was obtained. However at the moment the immersion dimension
ofRPn as a function ofn is not known. We refer to a recent survey (Davis, 1993).

The problem of finding motion planning algorithms in the projective space
RPn can be viewed as an elementary problem of topological robotics. Indeed,
points ofRPn represent lines through the origin in the Euclidean spaceRn+1 and
hence a motion planning algorithm inRPn should describe how a given lineA in
Rn+1 should be moved to another prescribed positionB.

Lines through the origin inR3 may represent metallic bars fixed at the fixed
point by a revolving joint; this situation is common in the practical robotics.

If the angle between the linesA andB is acute then one may rotateA toward
B in the two-dimensional plane spanned byA andB such thatA sweeps the acute
angle. Hence the problem reduces immediately to the special case when the lines
A andB are orthogonal. In this case, if the intention is to use simple rotations, one
needs a continuous choice of the direction of rotation in the plane spanned byA
andB.

Note that the Lusternik – Schnirelmann category of the real projective spaces
is well known and easy to compute: cat(RPn) = n+1. Using the general properties
of the topological complexity mentioned above we may write

n + 1 ≤ TC(RPn) ≤ 2n + 1.

We shall see below (see Corollary 30.4) that in factTC(RPn) ≤ 2n for all n; the
equality holds ifn is a power of 2.

The answer in the complex case is much simpler:

LEMMA 28.1. TC(CPn) = 2n + 1. More generally, for any simply connected
symplectic manifoldM one has

TC(M) = dim M + 1.
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Proof. Let u ∈ H2(M) be the class of the symplectic form. We have a zero-
divisoru⊗ 1− 1⊗ u satisfying

(u⊗ 1− 1⊗ u)2n = (−1)n
(
2n
n

)
un ⊗ un

where 2n = dim M. The cohomological lower bound givesTC(M) ≥ 2n + 1.
The cohomological upper bound of Farber (2004) (using the assumption thatM is
simply connected) gives the opposite inequalityTC(M) ≤ 2n + 1. ¤

THEOREM 28.2. If n ≥ 2r−1 thenTC(RPn) ≥ 2r .
Proof. Let α ∈ H1(RPn;Z2) be the generator. The classα × 1 + 1 × α is a

zero-divisor. Consider the power

(α × 1 + 1× α)2r−1.

Assuming that 2r−1 ≤ n < 2r it contains the nonzero term
(
2r − 1

n

)
αk ⊗ αn

wherek = 2r − 1 − n < n. Applying the cohomological lower bound the result
follows. ¤

29. Nonsingular maps

The main result concerningTC(RPn) (see Theorem 29.2) uses the following
classical notion:

DEFINITION 29.1. A continuous map

f :Rn ×Rn→ Rk (37)

is called nonsingular if:

(a) f (λu, µv) = λµ f (u, v) for all u, v ∈ Rn, λ, µ ∈ R, and

(b) f (u, v) = 0 implies that eitheru = 0, orv = 0.

In the mathematical literature there exist several variations of the notion of a
nonsingular map. We refer to Lam (1967) and Milgram (1967) where nonsingular
maps (of a different type) were used to construct immersions of real projective
spaces into the Euclidean space.

Problem.Givenn find the smallestk such that there exists a nonsingular map
f :Rn ×Rn→ Rk.
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Let us show that for anyn there exists a nonsingular mapf :Rn×Rn→ R2n−1.
Fix a sequenceα1, α2, . . . , α2n−1:Rn→ R of linear functionals such that anyn of
them are linearly independent. Foru, v ∈ Rn the valuef (u, v) ∈ R2n−1 is defined
as the vector whosejth coordinate equals the productα j(u)α j(v), where j = 1,
2, . . . ,2n− 1. If u , 0 then at leastn among the numbersα1(u), . . . , α2n−1(u) are
nonzero. Hence ifu , 0 andv , 0 there existsj such thatα j(u)α j(v) , 0 and thus
f (u, v) , 0 ∈ R2n−1.

Remarks.

1. Fork < n there exist no nonsingular mapsf :Rn×Rn→ Rk (as follows from
the Borsuk – Ulam theorem).

2. Forn = 1, 2, 4, 8 there exist nonsingular mapsf :Rn ×Rn → Rn having an
additional property that for anyu ∈ Rn, u , 0 the first coordinate off (u,u) is
positive.
These maps use the multiplication of the real numbers, the complex numbers,
the quaternions, and the Cayley numbers, correspondingly.

3. Forn distinct from 1, 2, 4, 8 there exist no nonsingular mapsf :Rn×Rn→ Rn

(as follows from the famous theorem of J. F. Adams).

Here is the main theorem of Farber et al. (2003):

THEOREM 29.2. The numberTC(RPn) coincides with the smallest integerk
such that there exists a nonsingular mapRn+1 ×Rn+1→ Rk.

We refer to Farber et al. (2003) for the proof. Here we will only explain
(following Farber et al., 2003) how one uses the nonsingular maps to construct
motion planning algorithms.

PROPOSITION 29.3.If there exists a nonsingular mapRn+1×Rn+1→ Rk with
n+1 < k thenRPn admits a motion planner withk local rules, i.e.,TC(RPn) ≤ k.

Proof.Let Φ:Rn+1×Rn+1→ R be a scalar continuous map such thatφ(λu, µv)
= λµφ(u, v) for all u, v ∈ V andλ, µ ∈ R. Let Uφ ⊂ RPn ×RPn denote the set of
all pairs (A, B) of lines inRn+1 such thatA , B andφ(u, v) , 0 for some points
u ∈ A andv ∈ B. It is clear thatUφ is open.

There exists a continuous maps defined onUφ with values in the space of
continuous paths in the projective spaceRPn such that for any pair (A, B) ∈ Uφ

the paths(A, B)(t), t ∈ [0,1], starts atA and ends atB. One may find unit vectors
u ∈ A andv ∈ B such thatφ(u, v) > 0. Such pairu, v is not unique: instead ofu,
v we may take−u, −v. Note that both pairsu, v and−u, −v determine the same
orientation of the plane spanned byA, B. The desired mapsconsists in rotatingA
towardB in this plane, in the positive direction determined by the orientation.
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Assume now additionally thatφ:Rn+1×Rn+1→ R is positivein the following
sense: for anyu ∈ Rn+1, u , 0, one hasφ(u,u) > 0. Then instead ofUφ we may
take a slightly larger setU′φ ⊂ RPn ×RPn, which is defined as the set of all pairs

of lines (A, B) in Rn+1 such thatφ(u, v) , 0 for someu ∈ A andv ∈ B. Now all
pairs of lines of the form (A,A) belong toU′φ. For A , B the path fromA to B
is defined as above (rotatingA towardB in the plane, spanned byA andB, in the
positive direction determined by the orientation), and forA = B we choose the
constant path atA. Then continuity is not violated.

A vector-valued nonsingular mapf :Rn+1 ×Rn+1 → Rk determinesk scalar
mapsφ1, . . . , φk:Rn+1 × Rn+1 → R (the coordinates) and the described above
neighborhoodsUφi cover the productRPn×RPn minus the diagonal. Sincen + 1
< k one may replace the initial nonsingular map by such anf that for anyu ∈
Rn+1, u , 0, the first coordinateφ1(u,u) of f (u,u) is positive. Now, the open sets
U′φ1

, Uφ2, . . . ,Uφk coverRPn×RPn. We have described explicit motion planning
strategies over each of these sets. ThereforeTC(RPn) ≤ k.

30. TC(RPn) and the immersion problem

THEOREM 30.1. For anyn , 1, 3, 7 the numberTC(RPn) equals the smallest
k such that the projective spaceRPn admits an immersion intoRk−1.

The proof (see Farber et al., 2003) uses Theorem 29.2 and the following
theorem of Adem et al. (1972):

THEOREM 30.2. There exists an immersionRPn → Rk (wherek > n) if and
only if there exists a nonsingular mapRn+1 ×Rn+1→ Rk+1.

We will give here a direct construction of a motion planning algorithm inRPn

starting from an immersionRPn→ Rk.

THEOREM 30.3. Suppose that the projective spaceRPn can be immersed into
Rk. ThenTC(RPn) ≤ k + 1.

Proof. ImagineRPn being immersed intoRk. Fix a frame inRk and extend
it, by parallel translation, to a continuous field of frames. Projecting orthogonally
ontoRPn, we findk continuous tangent vector fieldsv1, v2, . . . , vk onRPn such
that the vectorsvi(p) (wherei = 1, 2, . . . , k) span the tangent spaceTp(RPn) for
any p ∈ RPn.

A nonzero tangent vectorv to the projective spaceRPn at a pointA (which we
understand as a line inRn+1) determines a line ˆv in Rn+1, which is orthogonal to
A, i.e., v̂ ⊥ A. The vectorv also determines an orientation of the two-dimensional
plane spanned by the linesA andv̂, see Figure 20.
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Figure20.

For i = 1, 2, . . . , k let Ui ⊂ RPn×RPn denote the open set of all pairs of lines
(A, B) in Rn+1 such that the vectorvi(A) is nonzero and the lineB makes an acute
angle with the linev̂i(A). Let U0 ⊂ RPn × RPn denote the set of pairs of lines
(A, B) in Rn+1 making an acute angle.

The setsU0, U1, . . . ,Uk coverRPn ×RPn. Indeed, given a pair (A, B), there
exist indices 1≤ i1 < · · · < in ≤ k such that the vectorsvir (A), wherer = 1, . . . ,n,
span the tangent spaceTA(RPn). Then the lines

A, v̂i1(A), . . . , v̂in(A)

span the Euclidean spaceRn+1 and therefore the lineB makes an acute angle with
one of these lines. Hence, (A, B) belongs to one of the setsU0, Ui1, . . . ,Uik.

We may describe a continuous motion planning strategy over each setUi ,
wherei = 0, 1, . . . , k. First define it overU0. Given a pair (A, B) ∈ U0, rotateA
towardB with constant velocity in the two-dimensional plane spanned byA and
B so thatA sweeps the acute angle. This defines a continuous motion planning
sections0: U0 → P(RPn). The continuous motion planning strategysi : Ui →
P(RPn), wherei = 1, 2, . . . , k, is a composition of two motions: first we rotate
line A toward the linev̂i(A) in the in the 2-dimensional plane spanned byA and
v̂i(A) in the direction determined by the orientation of this plane (see above). On
the second step rotate the linêvi(A) towardB along the acute angle similarly to
the action ofs0. ¤

COROLLARY 30.4. One hasTC(RPn) ≤ 2n.
Proof. The casen = 1 is trivial. For n > 1 by the Whitney immersion the-

orem there exists an immersionRPn → R2n−1. The result now follows from
Theorem 30.3. ¤

Below is the table of the valuesTC(RPn) for n ≤ 23, see Farber et al. (2003).
It is obtained by combining the results mentioned above with the information on
the immersion problem available in the literature.
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TABLE I.

n 1 2 3 4 5 6 7 8 9 10 11 12

TC(RPn) 2 4 4 8 8 8 8 16 16 17 17 19

n 13 14 15 16 17 18 19 20 21 22 23

TC(RPn) 23 23 23 32 32 33 33 35 39 39 39

As explained in Farber et al. (2003) explicit motion planning algorithms in
RPn with n ≤ 7 could be constructed using the multiplication of the complex
numbers, the quaternions, and the Cayley numbers.

31. Some open problems

Finally we mention several open problems concerning the homotopy invariant
TC(X).

1. Rational version ofTC(X). It can be “formally” defined asTC(XQ). One
should be able to express this number in terms of Sullivan’s minimal model.
This result may give stronger (more sophisticated) lower bounds than the
cohomological lower bound mentioned above.
The rational version of the LS category was introduced by Felix and Halperin
(1982).

2. Symmetric motion planning. One may decide to impose on the motion plan-
ning algorithmss: X × X → PX two additional (quite natural) conditions:
(a) The paths(A,A) is a constant path at pointA; (b) For A , B one has
s(A, B)(t) = s(B,A)(1− t). In other words, the motion fromB to A goes along
the same route as the motion fromA to B but in the reverse order.
The appropriate numerical invariantTCS(X) measuring the topological com-
plexity is defined asone plus the Schwartz genus of the fibration

(P′X)/Z2→ (X × X − ∆)/Z2.

HereP′X is the set of pathsγ: [0,1]→ X with γ(0) , γ(1).
It has the following properties: (A)TCS(X) ≥ TC(X); (B) In some examples
TCS(X) > TC(X); (C) The numberTCS(X) is not a homotopy invariant ofX.

Problem.Find a cohomological lower bound forTCS(X).

3. Motion planning in aspherical spaces. The problem is to computeTC(X) in
the case when the polyhedronX is aspherical, i.e.,πi(X) = 0 for all i > 1. The
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homotopy type of an aspherical spaceX depends only on the fundamental
groupπ = π1(X). Hence in this case the numberTC(X) depends only on the
groupπ viewed as a discrete group. One should be able to express the number
TC(X) in terms of the algebraic properties of the groupπ1(X).
A similar question for the Lusternik – Schnirelmann category was solved by
Eilenberg and Ganea (1957). Their theorem states:If X is aspherical then

cat(X) − 1 = dimπ = geom dimπ (38)

except3 special low-dimensional cases. Here dimπ is the leastn such that
Hq(π; A) = 0 for any moduleA and for anyq > n. The symbol geom dimπ
denotes the smallest dimension of aK(π,1)-complex.
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