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Abstract. In this paper we discuss topological problems inspired by robotics. We study in detail
the robot motion planning problem. With any path-connected topological sage associate

a numerical invarianTC(X) measuring the Complexity of the problem of navigation K" We
examine how the numberC(X) determines the structure of motion planning algorithms, both
deterministic and random. We compute the invarig@{X) in many interesting examples. In the
case of the real projective spaBP" (wheren # 1, 3, 7) the numbeTC(RP") — 1 equals the
minimal dimension of the Euclidean space into wHRR" can be immersed.
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1. Introduction

This paper represents a slightly extended version of a mini-course consisting of
four lectures delivered at the Univeksitle Monteal in June 2004. The main
goal was to give an introduction to the topological robotics and in particular
to describe a topological approach to the robot motion planning problem. This
new theory appears to be useful both in robotics and in topology. In robotics, it
explains how the instabilities in the robot motion planning algorithms depend on
the homotopy properties of the robot's configuration space. In topology, if one
regards the topological spaces as configuration spaces of mechanical systems,
one discovers a new interesting homotopy invarib@{X) which measures the
“navigational complexityof X. The invariantTC(X) is similar in spirit to the
Lusternik —Schnirelmann category cé}(although in factTC(X) and catK) are
independent, as simple examples (given below) show.

The topological approach to the robot motion planning problem was initiated
by the author in Farber (2003; 2004). It was inspired by the earlier well-known
work of Smale (1987) and Vassdv (1988) on the theory of topological complex-
ity of algorithms of solving polynomial equations. The approach of Farber (2003;
2004) was also based on the general theory of robot motion planning algorithms
described in the book of J.-C. Latombe (1991). It is my pleasure to acknowledge
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the importance of discussions of the initial versions of Farber (2003; 2004) with
Dan Halperin and Micha Sharir in summer 2001 in Tel Aviv. The theory of a genus
of a fiber space developed by Schwarz (1966) plays a technically important role
in our approach as well as in the work of Smale and Vassiliev.

Further developments and applications of the theory of topological complexity
of robot motion planning of Farber (2003; 2004) are also mentioned in these notes.
They include the study of collision free motion planning algorithms in Euclidean
spaces (Farber and Yuzvinsky, 2004) and on graphs (Farber, 2005) and also ap-
plications to the immersion problem for the real projective spaces (Farber et al.,
2003).

These notes also include some new material. We explain how one may con-
struct an explicit motion planning algorithm in the configuration space dif-
tinct particles inR™ having topological complexity< n?. Such an algorithm
may have some practical applications. We also analyze the complexity of con-
trolling many objects simultaneously. Finally we mention some interesting open
problems.

The plan of the lectures in Montreal was as follows:

Lecture 1 Introduction. Interesting topological spaces provided by robotics and
guestions about the standard topological spaces one asks after encounters
with robotics.

Lecture 2 The notion of topological complexity of the motion planning problem.
The Schwarz genus. Computations of the topological complexity in basic
examples.

Lecture 3 Topological complexity of collision free motion planning of many par-
ticles in Euclidean spaces and on graphs.

Lecture 4 Motion planning in projective spaces. Relation with the immersion
problem for the real projective spaces. Discussion of open problems.

2. First examples of configuration spaces

The ultimate goal of robotics is creating of autonomous robots (Latombe, 1991).
Such robots should be able to accept high-level descriptions of tasks and execute
them without further human intervention. The input description speoifiest
should be done and the robot decidesvto do it and performs the task. One
expects robots to have sensors and actuators.

A few words about history of robaotics. The idea of robots goes back to ancient
times. The wordobotwas first used in 1921 by Karel Capek in his play “Possum’s
Universal Robots.” The wortbboticswas coined by Isaac Asimov in 1940 in his
book “I, robot.”
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What is common to robotics and topology? Topology enters robotics through
the notion ofconfiguration spaceAny mechanical systeiR determines the vari-
ety of all its possible statés which is called the configuration spaceRfUsually
a state of the system is fully determined by finitely many real parameters; in this
case the configuration spa¥ecan be viewed as a subset of the Euclidean space
RK. Each point ofX represents a state of the system arftedént points repre-
sent diferent states. The configuration spa¥esomes with the natural topology
(inherited fromR¥) which reflects the technical limitations of the system.

Many problems of control theory can be solved knowing only the configura-
tion space of the system. Peculiarities in the behavior of the system can often be
explained by topological properties of the system’s configuration space. We will
discuss this in more detail in the case of the motion planning problem. We will
see howone may predict the character of instabilities of the behavior of the robot
knowing the cohomology algebra of its configuration space

If the configuration space of the system is known one may often forget about
the system and study instead the configuration space viewed with its topology and
with some other geometric structures, e.g., with the Riemannian metric.

EXAMPLE 2.1 (Piano movers’ problem; Schwartz and Sharir, 1983). In Figure
1 the large rectangles represent the obstacles and the black figures represent dif-
ferent states of the “piano.”

We assume that the picture is planar, i.e., the objects move in the horizontal
plane only. Of course in practice the obstacles may have much more involved
geometry than it is shown on the picture. One has to move the piano from one
state to another avoiding the obstacles. The configuration space in this example is
3-dimensional having complicated geometry. The state of the piano is determined
by the coordinates of the center and by the orientation.

EXAMPLE 2.2 (The robot arm; Latombe, 1991). Schematically, the robot arm
consists of several bars connected by revolving joins (Figure 2). One distinguishes

S 4
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Figure 1.
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Figure 2.

the spacial case and the planar case (when the bars lie in a single 2-dimensional
plane).
The configuration space in this example is

X=8txstx...xst
(then-dimensional torus) in the planar case and it is
X=82x82x..-xS?

in the spacial case. We allow the self-intersection of the arm. The space of all
configurations of the planar robot arm with no self-intersections is topologically
very much diferent: it is homotopy equivalent to a circle, see the recent work of
Connelly et al. (2003).

EXAMPLE 2.3 (The “usual” configuration spaces). [¥be a topological space
and letX = F(Y,n) denote the subset of the Cartesian prodistY x --- x Y
(ntimes) containing the-tuples §1,y>, ..., yn) with the property thay; # y; for

i # j (Figure 3).

X = F(Y, n) is the configuration space of a systermgdarticles moving in the
spaceY avoidingcollisions The most interesting special cases ¥re R™ (the
Euclidean space) and whéfis a connected graph.

The configuration spacds(R™, n) were introduced by Fadell and Neuwirth
(1962). Nowadays they are standard objects of topology. The configuration spaces
F(R? n) and F(R? n)/Z, appear in the theory of braids. In 1968 V. Arfubl
used information about cohnomology of the configuration spaces to study algebraic
functions.

7
Figure 3.
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In robotics it is natural to study the configuration spakés, n) whererl is a
graph. Such spaces describe several objects moving along a prescribgdayet
the factory floor) avoiding collisions, see Section 27.

3. \Varieties of polygonal linkages

In this section we consider the configuration spaces of polygonal linkages. These
are remarkable manifolds which describe shapes of closed polygonal chains in
robotics; they also appear in many areas of mathematics. The varieties of polyg-
onal linkages carry a set of geometric structures; for example they aneK
and support several Hamiltonian circle actions. These varieties were studied by
Thurston (1987), Walker (1985), Klyachko (1994), Kapovich and Millson (1996),
and Hausmann and Knutson (1998). Our exposition mainly follows the work of
Klyachko (1994). We describe some basic facts about these varieties referring
the reader to the articles mentioned above for more complete information and for
proofs.

Fix a vectora € R, a = (ay, ..., am) consisting ofm positive real numbers
a > 0. Define the varietyM(a) as follows

M(a) = {(21,...,Zm);z € SZ,Zm:aaZa = 0}/8%
i=1

Here SQ acts diagonally on the produs x ... x S2. M(a) is the variety of all
polygonal shapes iR having the given side lengths (Figure 4).
The first question is whethaé(a) in nonempty.

Figure 4.
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Figure 5.

LEMMA 3.1. M(a) # @ if and only if for anyi = 1,...,mone hasg; < |a|/2,
wherelal = a; +ax + -+ - + an.

This follows from the triangle inequality.

DEFINITION 3.2. Vectora € R is genericif the equationzi”“:‘1 63 = 0 has no
solutions withg = +1.

Equivalently,a is generic if the varietyM(a) contains ndined configurations,
i.e., configurations with all the edges lying on a single line (Figure 5).

LEMMA 3.3. If ais generic therM(a) is a closed smooth manifold of dimension
2(m-3).

3.1. SHORT AND LONG SUBSETS

How does the varietyv(a) depend on the vect@? To answer this question we
need to introduce the notions sifiortandlong subsets.
A subset] c {1,2,..., m} is calledshortiff

Das<)a

ied j#d
One element subsefs= {i} are always short assuming thd(a) is nonempty.

S(a) will denote the set of all short subse®a) is a partially ordered set, it is
determined by its maximal elements (since a subset of a short subset is short).

EXAMPLE 3.4. Leta=(1,1,1,2). The maximal elements &a) are:
{(12), (13), (23). {4}}.

LEMMA 3.5. Assume that the vectossa’ € R are generic and such that the
posetsS(a) andS(a’) are isomorphic. TheiM(a) and M (&) are diffeomorphic.

See Hausmann and Knutson (1998) for a proof.

3.2. POINCARE POLYNOMIAL OF M(A)

Klyachko (1994) found a remarkable formula for the Poigcpolynomial of
M(a).
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THEOREM 3.6. The Poincaré polynomial d¥1(a) equals

_ 1 2ym-1 2]
PO = g 1)((1 + ) JEZS(:a)t ) L

The proof uses the Morse theory, we shall sketch its main points.
Fix a pair of indices, j € {1,..., m} and consider the smooth functieh M(a)
— R given by
H = —llaiz + &z

One may assume without loss of generality thati + 1. ThenH is the negative
square of the length of a diagonal of a polygon (Figure 6).

The critical points oH are of types (1), (1), (1) described in Figure 7. In the
case of critical points of type (I) one has= z;. For the type (Il)z = -z;. In the
case (Ill) all the sides of the polygon exceptandz; are lined up. The length of
the base of the triangle equals

D, k. e
K, ]

Clearly the critical points of types (1) and (II) form critical submanifolds which
are difeomorphic to varieties of polygonal linkages with lower number of edges.

Critical points of type (lll) are isolated.

The following Lemma describes the Morse indices:

LEMMA 3.7. The Morse —Bott index of the critical submanifdldl is 0. The
Morse — Bott index of the critical submanifo{tl) is 2. The Morse index of any
critical point of type(lll) equals twice the number of minus signsappearing
in (2).

We refer to Klyachko (1994) and to Kapovich and Millson (1996) for a proof.
We only mention that the first statement concerning the type (I) critical points is

Figure 6.
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Figure 7.

obvious: the diagonal is then the longast a; and therefore the functiod has
minimum.

Figure 8 shows why each minus siggin the sum (2) gives a two-dimensional
family of deformations of the shape of the polygon decreasing (quadratically) the
value of the functiorH.

LEMMA 3.8. H: M(a) — R is a perfect Morse — Bott function.

~\

Figure 8.
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Figure 9.

The proof of this statement uses the existence of a symplectic structure on the
manifold M(a) such that the functiotd generates a Hamiltonian circle action.
The latter can be described geometrically as in Figure 9.

One bends the polygon along the specified diagonal. The fixed points of this
action are precisely the critical points bf, i.e., the polygons of types (1), (),

().

THEOREM 3.9 (Klyachko). Assume that the vecta € R is generic. Then
M(a) admits a symplectic structure such that the circle action described above is
Hamiltonian with the functiotd as the Hamiltonian.

Perfectness of the functidt leads to the following recurrence relation for the
Poincaé polynomials. Denote

@, &,....8,....an, & +a)) e R,
@s,...,&,...,4j,....aml& — aj) e RT%.

a,
a

Here the hat above a symbol means that this symbol should be skipped. We obtain
(using the perfectness #f) the following recurrence equation:

Puia)(t) = Pua,)(t) + t?Pma () + Z t2ne,
|ay—ay|< Ty, exAk<ay+a

whereg = +1 andn, is the number of negative. This relation leads eventually
to formula (1) for the Poincérpolynomial. The reader may find the continuation
of this beautiful story in (Klyachko, 1994).



204 M. FARBER
4. Universality theorems for configuration spaces

How special are configuration spaces of the mechanisms? In other words, we ask
if there exist specific topological properties which characterize the configuration
spaces among the topological spaces?

Universality theorems for configuration spaces claim (roughly) thatred-
sonablé topological spaces are configuration spaces of linkages. Many theorems
of this type are known. Lebesgue (1950) gave an account of several results includ-
ing Kempe’s universality theorem, not for the configuration space of the mecha-
nism itself but for the orbit of one of its verticesTdute courbe algébrique peut
étre tracée a l'aide d’'un systeme artictile

A theorem of Jordan and Steiner (1999) states:

THEOREM 4.1. Any compact real algebraic variely c R" is homeomorphic
to a union of components of the configuration space of a mechanical linkage.

Kapovich and Millson (2002) prove the following statement:

THEOREM 4.2. For any smooth compact manifold there exists a linkage
whose moduli space isgB#omorphic to a disjoint union of a number of copies
of M.

Let us explain the terms used here. &lvstract linkagds a triple

L=(L¢,W)

whereL is a graphW c V(L) is an ordered subset of verticeslgfand?/: E(L) —
R, is a function on the set of edgeslofHereW are thefixedvertices ofL and¢
is a “metric’ (length function) onL. A planar realizationof £ is a map

¢: V(L) > R?
such that if the verticeg w € V(L) are joined by an edgee E(L) in L then

(V) — ¢(W)I = £(e).

LetW = (v4,...,Vn) and letZ = (z, ..., z,) be an ordered set ofpointsz € R?.
A planar realizationof £ relative toZ is a realizationp: V(L) — R? as above
satisfying an additional requirement thit;) = z; for all j = 1,...,n. The set
C(L, 2) of all relative planar realizations f is called therelative configuration
spaceof L. Elements ofC(£, Z) are all planar realizations of such that the
vertices ofW stay in the prescribed positiods

The linkages which we studied in Section 3 are special cases when the graph
L is homeomorphic to the circle.
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Kapovich and Millson (2002) observe that the configuration space of any pla-
nar linkage admits an involution (induced by a reflection of the plane) and this
involution is nontrivial if the graptL is connected and the configuration space
is not a point. Hence iM" is a closed manifolsh > 0 which does not admit a
nontrivial involution (such manifolds exist) thévl is not homeomorphic to the
moduli space of a planar linkage.

5. Aremark about configuration spaces in robotics

The notion of configuration space may seem obvious and even trivial for a topol-
ogist. But for people in robotics it is not so. In fact in some problems of robotics
this notion appears to be even controversial. For a system of great complexity it is
unrealistic to assume that its configuration space can be described completely;
more reasonably to think that at any particular moment the topology and the
geometry of the configuration space are known only partially or approximately.

We want to emphasize that we do not question the existence of the configura-
tion spaces. However in some particular cases it may happen to be too expensive
to learn the topology of the configuration space entirely. Then one has to solve the
control problems “on-line” and to learn the underlying configuration space at the
same time.

It seems plausible that there may exist a better mathematical notion of a con-
figuration space describing pédrtially knowri topological space whose geometry
is being gradually revealed.

6. The motion planning problem

In this section we start studying the robot motion planning problem which is the
main topic of these lectures.

Imagine that you get into your advanced car and $ag home! and the car
takes you home, automatically, obeying theficarules. Such a car must have a
GPS (finding its current location) and a computer program suggesting a specific
route from any initial state to any desired state. Computer programs of this kind
are based omotion planning algorithmdn general, given a mechanical system,

a motion planning algorithm is a function which assigns to any pair of states of
the system (i.e., the initial state and the desired state) a continuous motion of the
system starting at the initial state and ending at the desired state. A recent survey
of algorithmic motion planning can be found in Sharir (1997); see also Latombe
(1991).

Farber (2003; 2004) reveal the topological nature of the robot motion planning
problem. They show that the navigational complexity of configuration spaces,
TC(X), is a homotopy invariant quantity which can be studied using the algebraic
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Figure 10.

topology tools. This theory explains how knowing the cohomology algebra of
configuration space of a robot one may predict instabilities of its behavior.

Below in this article we describe the results of Farber (2003; 2004) adding
some more recent developments.

Let X denote the configuration space of the mechanical system. Continuous
motions of the system are represented by continuous pafbsl] — X. Here the
point A = y(0) represents the initial state apfl) = B represents the final state of
the system (Figure 10).

Assume thaiX is path-connected. Practically this means that one may fully
control the system and bring it to an arbitrary state from any given state. Denote
by PX the space of all continuous pathq0, 1] — X. The spacd®X is supplied
with the compact-open topology. Let

mPX— XxX

be the map which assigns to a patthe pair(y(0), y(1)) € Xx X of the initial-final
configurationsz is a fibration in the sense of Serre.

DEFINITION 6.1. A motion planning algorithm is a section
S Xx X - PX 3)

of fibrationm, i.e.,
o S= lyxx. 4)

The first question to ask is whether there exist motion planning algorithms
which are continuous? Continuity of a motion planning algorittmeans that
the suggested routsA, B) of going from A to B depends continuously on the
statesA andB.

LEMMA 6.2. A continuous motion planning algorithm Xexists if and only if
the spaceX is contractible!

Proof. Let s: X x X — PX be a continuous MP algorithm. Here f&B €
X the images(A, B) is a path starting af and ending aB. Fix B = By € X.
DefineF(x,t) = s(x, Bp)(t). HereF: X x [0, 1] — X is a continuous deformation
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Ay

S(AB)(1)

S(ApB)(®) As

B
Figure11.

with F(x,0) = x andF(x,1) = Bg for any x € X. This shows thaX must be
contractible.

Conversely, leX be contractible. Then there exists a deformakoiX x [0, 1]
— X collapsingX to a pointBy € X. One may connect any two given poirs
andB by the concatenation of the paf{A, t) and the inverse path #©(B,t). [

COROLLARY 6.3. For a system with noncontractible configuration space any
motion planning algorithm must be discontinuous.

We see that the motion planning algorithms appearing in real situations are
most likely discontinuous. Our main goal is to study thecontinuitiesin these
algorithms. Having this goal in mind, with any path-connected topological space
X we associate a numerical invariah€(X) measuring the complexity of the
problem of navigation irX. We give four diferent descriptions of how the num-
ber TC(X) influences the structure of the motion planning algorithmX.ione
of these descriptions identifidC(X) with the minimal number of €ontinuous
rules’ which are needed to describe a motion planning algorithnX.ion the
other hand the numbdiC (X) equals the minimaldrder of instability of motion
planning algorithms irX. We will also recover the numbdiC (X) while dealing
with therandom motion planning algorithnie X.

Formally we act in a dierent way: we define four a priori distinct notions of
navigational complexity of topological spaces (which we def@@g(X), where
j =1, 2,3, 4) and we show thaiC;(X) = TC;(X) for “good” spacesX (for
example, for polyhedrons).

1 This result was first observed in Farber (2003).
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7. Tame motion planning algorithms

DEFINITION 7.1. A motion planning algorithms: X x X — PX s called tame
if X x X can be split into finitely many sets

XxX=FLUF,UF3U---UFg (5)

such that
1. §f: Fi —» PXis continuousj = 1,...,k,
2. FinF; = @, wherei # |,
3. EachF; is an Euclidean Neighborhood Retract (ENR).

For a fixed pair of points4, B) € F;, the curve produced by the algorithm
t — (A, B)(t) € Xis a continuous curve iK which starts at poind € X and ends
at pointB € X. This curve depends continuously ok B) assuming that the pair
of points @, B) varies in the sef;.

Recall the definition of ENR:

DEFINITION 7.2. Atopological spacK is called an ENR if it can be embedded
into an Euclidean spacé c RX such that for some open neighborho¥d U c
RX there exists a retractianU — X, r|x = 1x.

All motion planning algorithms which appear in practice are tame. The con-
figuration spaceX is usually a semi-algebraic set and the detsc X x X are
given by equations and inequalities involving real algebraic functions; thus they
are semi-algebraic as well. In practical situations the functsinsF; — PX are
real algebraic and hence they are continuous.

DEFINITION 7.3. The topological complexity of a tame motion planning algo-
rithm (3) is the minimal number of domains of continukyn a representation of

type (5).

DEFINITION 7.4. The topological complexitf C1(X) of a path-connected
topological spaceX is the minimal topological complexity of motion planning
algorithms inX.

ObservationTC(X) = 1 if and only if X is an ENR and it is contractible.

We setTC1(X) = oo if X admits no tame motion planning algorithms.

EXAMPLE 7.5. Let us show thatC1(S") = 2 for n odd andTC(S") < 3 for
neven
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A

-A
Figure 12.

-A
Figure 13.

Let F1 c S" x S" be the set of all pairsA, B) such thatA # —B. We may
construct a continuous secti@y: F1 — PS" by moving A toward B along the
shortest geodesic arc.

Consider now the sé¥, c S" x S" consisting of all pairs antipodaf(—A).
If nis odd we may construct a continuous sectigrF, — PS" as follows. Fix a
nonvanishing tangent vector fieldbn S". Move A toward the antipodal pointA
along the semi-circle tangent to vectgA).

In the case whem is even find a tangent vector fieldwith a single zero
Ao € S". DefineF;, = {(A,—A); A # Ag} and definesy: F, — PS" as above. The
setF3 = {(Ao, —Ap)} consists of a single pair; defirg: F3 —» PS" by choosing
an arbitrary path from\g to —Ag.

8. The Schwarz genus

Let p: E — B be afibration. Its Schwartz genus is defined as the minimal number
k such that there exists an open cover of the lBasdJ; U U, U - - - U Uy with the
property that over each sblj c B there exists a continuous sectispU; — E

of E — B. This notion was introduced by A. S. Schwarz in 1958. In 1987 —
1988 S. Smale and V. A. Vassiliev applied the notion of Schwarz genus to study
complexity of algorithms of solving polynomial equations.

2 An equivalent concept was introduced in Farber (2004) under the name “motion planner.”
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The genus of a fibration equals 1 if and only if it admits a continuous section.

The genus of the Serre fibratid’yX — X coincides with the Lusternik—
Schnirelmann category c) of X, see Cornea et al. (2003). HaPg(X) is the
space of paths iXX which start at the base poirg € X. For the motion planning
problem we need to study afféirent fibrationr: PX — X x X.

9. The second notion of topological complexity

The invariantTC 1 (X) introduced above seems to be quite natural from the robotics
point of view. However a more convenient topological invariant uses open covers
instead of decompositions into ENR’s.

DEFINITION 9.1. LetX be a path-connected topological space. The number
TC,(X) is defined as the Schwartz genus of the fibration

mPX— Xx X

This notion coincides with the original definition of the topological complex-
ity of the robot motion planning problem given in Farber (2003).
Explicitly, TC2(X) is the minimal numbek such that there exists an open
cover
XxX=UguUyuU---UUyg

with the property that admits a continuous sectia U; — PXover eactJ; c
Xx X,

Note that the inclusiotJ; — X x X may be not null-homotopic. For exam-
ple, if X is a polyhedron, there always exists a continuous section over a small
neighborhood of the diagonl c X x X.

We know thafTC,(X) = 1 if and only if X is contractible.

LEMMA 9.2. One has

cat(X) < TC»(X) < cat(X x X).
Proof. We shall use two following simple properties of the Schwartz genus.
Consider a fibratiole — B.

1. LetB’ c Bbe asubseE’ = p~1(B’). Then the genus & — B’ is less than
or equal to the genus & — B.

2. The genus oE — Bis less than or equal to c&,
To probe the lemma, apply 1 to the fibratiBiX — X x X and to the subset
X x Xg € X x X. Note thatt™1(X x Xg) = PoX. We findTC»(X) > cat(X).
2 givesTC2(X) < catX x X). O
ExerciselLet G be a connected Lie group. Then
TC»,(G) = cat@).
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EXAMPLE 9.3. TC»(SO(3) = ca(SO(3) = cat(®RP?) = 4.

This example is important for robotics since SO(3) is the configuration space
of a rigid body inR?3 fixed at a point.

10. Homotopy invariance

THEOREM 10.1. The numbeiTC5(X) is a homotopy invariant oX.

See Farber (2003) for a proof.

11. Order of instability of a motion planning algorithm

Lets: X x X —» PXbe a tame motion planning algorithm and let
XxX=FiUFyU...UFg (6)

be a decomposition into domains of continuity as in Definition 7.1. ifereF; =
@ and eaclF; is an ENR.

DEFINITION 11.1. Theorder of instability of the decomposition (6) is the
maximalr so that for some sequence of indices

1<ii<ip<---<ir <k
the intersection o B

FiunF,n...nFj, #92
in not empty. Theorder of instabilityof a motion planning algorithfs is the
minimal order of instability of decompositions (6) fer

The order of instability is an important functional characteristic of a motion
planning algorithm. If the order of instability equalghen for anye > O there
existr pairs of initial-final configurations

(A1,B1), (A2.B2), ..., (A.B)

which are within distance& e from one another and which lie in distinct s&s
This means that small perturbations of the input d&teBj may lead tor
essentially distinct motions suggested by the motion planning algorithm.

DEFINITION 11.2. LetTC3(X) be defined as the minimal order of instability
of all tame motion planning algorithms X

3 This notion was introduced and studied in Farber (2004).
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Obviously one has:
TC3(X) < TC1(X). @)

12. Random motion planning algorithms

In this section we analyze complexity of random motion planning algorithms,
following Farber (2005).

Let X be a path-connected topological space.

A randomn-valued pathr in X starting atA € X and ending aB € X is given
by an ordered sequence of pa#his.. ., yn € PXand an ordered sequence of real
numbersps, ..., pn € [0, 1] such that eacly;: [0,1] — Xis a continuous path in
X starting atA = y;(0) and ending aB = y;(1), and

Pj>0, pr+p2+---+pn=1 (8)

One thinks of the pathg, ..., yn as being dferentstatesof o- (Figure 15).
The numbep; is theprobability that the random patin is in statey;. Random
patho as above will be written as a formal linear combination

o = P1y1+ P2y2+ -+ Pnyn.

Equality betweem-valued random paths is understood as follows: the random
path

0 =P1yr+ P2y2+ -+ Payn.
is equal to
o' =Py + oY+ + Pavn
iff pj = p] forall j=1,...,nand, besidesyj = y] for all indicesj with p;j # 0.
In other words, the patly; which appears with the zero probabilipf = 0
could be replaced by any other path starting.aind ending aB.

(A,B)

(Ap B)
(A5 By

Figure 14.
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We denote byP,X the set of alh-valued random paths K. The setP,X has
a natural topology: It is a factor-space of a subspace of the Cartesian product of
copies ofPX x [0, 1].
The canonical map
7 PaX — X x X 9

assigning to a random path its initial and end points is continuous.

DEFINITION 12.1. Ann-valued random motion planning algorithisidefined
as a continuous section
SXx X — PpX (20)

of fibration (9).

Given a pair A,B) € X x X (an input), the output of the random motion
planning algorithm (10) is an ordered probability distribution

S(A,B) = pry1+ -+ + Pavn (11)

supported om paths betweei andB. In other words, the algorithra produces
the motiony; with probability p; wherej = 1,...,n.

Now we come to yet another notion of complexity of path-connected topolog-
ical spaces:

DEFINITION 12.2. LetTCy4(X) be defined as the minimal integersuch that
there exists an-valued random motion planning algoritmsnX x X — P,X.
13. Equality theorem

THEOREM 13.1. Let X be a simplicial polyhedron. Then four notions of topo-
logical complexity introduced above coincide, i.e., one has

TC1(X) = TC2(X) = TC3(X) = TC4(X). (12)

1

¥
Figure 15.
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Proof.Letk denoteTC1(X) and lets: X x X — PX be a tame motion planning
algorithm (as in Definition 7.1). We have a splittidgx X = Fq U --- U Fy into
disjoint ENRs such that the restrictic; is continuous. Let us show that one
may enlarge each sBf to an open se); > Fj such that the sectioglg; extends
to a continuous sectiog{ defined orlJ;. This would prove that

TC2(X) < TC1(X). (13)

We will use the following property of the ENRH:F c X and both spaceBb
and X are ENRs then there is an open neighborhbdbd X of F and a retraction
r:U — F such that the inclusiof: U — X is homotopic ta o r, wherei: F — X
denotes the inclusiorsee Dold, (1972, Chapter 4, Section 8) for a proof.

Using the fact that the sef§ andX x X are ENRs, we find that there exists
an open neighborhood; c X x X of the setF; and a continuous homotopy
h: Ui — Xx X, wherer € [0, 1], such thahl: Uj — X x X is the inclusion andi}
is a retraction ofJ; ontoFj. We will describe now a cqntinuous mapU; — PX
with E o § = 1y,. Given a pair A, B) € Uj, the pathh! (A, B) in X x X is a pair
of paths ¢, ), wherey is a path inX starting at the poing(0) = A and ending
at a pointy(1), ands is a path inX starting atB = 6(0) and ending a#(1). Note
that the pai(y(1), 6(1)) belongs td;; therefore the motion planney. F; — PX
defines a path

§=1s(r(1),6(1)) € PX

connecting the pointg(1) ands(1). Now we sefs/(A, B) to be the concatenation
of y, & ands™! (the reverse path a:

S(AB)=y-¢-6%

Now we want to show thaX always admits a tame motion planning algorithm
(see Definition 7.1) with the number of local domasequal tof = TCo(X).
This will show that

TC1(X) < TC2(X). (14)

Let
UiuUpU---UU, = Xx X, wheref = TCy(X), (15)

be an open cover such that for ainy 1,..., ¢ there exists a continuous motion
planning maps:U; — PXwith 7 o 5 = 1y,. Find a piecewise linear partition
of unity {fy,..., f,} subordinate to the cover (15). HefeX x X — [0,1] is a
piecewise linear function with support Iy and such that for any paiA(B) €

X x X, it holds that

f1(A B) + fa(A B) + - + fo(A B) = 1.
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Fix numbers < ¢; < 1 wherei = 1,...,fwithc; +--- + ¢, = 1. Let a subset
Vi c Xx X, wherei =1,...,¢, be defined by the following system of inequalities

fi(A,B) <c; forallj<i,
fi(A, B) = ¢.

Then:
(a) eachv; is an ENR,;

(b) V; is contained inJ;; therefore, the sectiog: U; — PXrestricts ontd/; and
defines a continuous section oxégr

(c) the sety/; are pairwise disjointy; N Vj = @ fori # j;
(d) ViUV U--- UV = XXX,

Hence we see that the séfs and the sections|y, define a tame motion
planning algorithm in the sense of Definition 7.1 wite TC,(X) local domains.
Now we prove that
TC3(X) < TC2(X). (16)

Suppose that: Xx X — PXis a tame motion planning algorithm with domains of
continuityF1, ..., Fx ¢ XxX. Denote the order of instability of the decomposition
Xx X=F1U---UFgbyr <k Then any intersection of the form

Fi,n---n IEir+1 =, @an

is empty, where 1< ip < ip < -+- < iry1 < k Forany index = 1,...,k fix
a continuous functiorfi: X x X — [0, 1] such thatfi(A,B) = 1 if and only if
the pair @, B) belongs toF; and such that the support sufip(etracts ontd;.
Let ¢: X x X — R be the maximum of (finitely many) functions of the form
fi, + fi, +--- + fi_,, for all increasing sequences<li; < iy < --- <iry1 < kof
lengthr + 1. We have:

#(AB)<r+1

for any pair @, B) € X x X, as follows from (17).
Let U; c X x X denote the set of ally, B) such that

(r+1)- fi(A,B) > (A B).

ThenU; is open and contain;, and hence the setdy, ..., Ux form an open
cover of X x X. On the other hand, any intersection

U,NUp,N---NUj,, =9

is empty.
As above we may assume that the déis. .., Uy are small enough so that
over eachU; there exists a continuous motion planning section (here we use
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the assumption that eadh is an ENR). Applying Lemma 13.2 (see below) we
conclude thaTC»(X) <.

Combining inequalities (7), (13), (14), (16) we obtdi@1(X) = TC»(X) =
TC3(X).

Next we show thalT C,(X) = TC4(X). This last argument is an adjustment of
the proof of Schwarz (1966, Proposition 2).

Assume that there exists afvalued random motion planning algorithsnXx
X = PpXin X. The right-hand side of formula (11) defines continuous real valued
functionspj: X x X — [0,1], wherej = 1,...,n. Let Uj denote the open set
pj‘l(O, 1] ¢ X x X. The setdJ,, ..., U, form an open covering oX x X. Setting
sj(A, B) = yj, one gets a continuous map: U; — PXwith 7 o § = 1y,. Hence,
n > TCy(X) according to the definition ofFC2(X).

Conversely, settingg = TC»(X), we obtain that there exists an open cover
Ug,...,Ux c XxXand a sequence of continuous mapt); —» PXwherernos =
1y,,1 =1,...,k Extends to an arbitrary (possibly discontinuous) mapping

Si: Xx X - PX

satisfyingr o Sj = 1xxx. This can be done without anyfficulty; it amounts in
making a choice of a connecting path for any pair of poiAt®) € XxX-U;. One
may find a continuous partition of unity subordinate to the open ddyer. ., Uy.
It is a sequence of continuous functiops . . ., px: X x X — [0, 1] such that for
any pair @, B) € X x X one has

P1(A. B) + p2(A,B) +--- + p(A.B) = 1

and the closure of the sprl(o, 1] is contained ifJ;. We obtain a continuous
valued random motion planning algoritrenX x X — P,X given by the following
explicit formula

S(A, B) = p1(A, B)S1(A, B) + - - - + px(A, B)Sk(A, B). (18)
The continuity ofs follows from the continuity of the mapS; restricted to the
domainspi‘l(o, 1]. This completes the proof. O

LEMMA 13.2. LetX be a path-connected metric space. Consider an open cover
XxX=UjuUyU---UU;suchthatforany = 1,..., ¢ there exists a continuous
maps: U; — PXwithros = 1y,. Suppose that for some integeany intersection

UilﬁUizﬂ...ﬂUir =g
is empty wherd <i; <i;<--- <i; <£. ThenTCy(X) <.

A proof of Lemma 13.2 can be found in Farber (2004).
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Although the numberd C(X) (wherej = 1, 2, 3, 4) coincide wheiX is
a simplicial polyhedron, they do not coincide wh¥nis a general topological
space. The most convenient notion topologically & (X).

Notation.In what follows we will use the notatioRC(X) = TC,(X).

14. Anupper bound for TC(X)

THEOREM 14.1. For any path-connected paracompact locally contractible
spaceX one has
TC(X) <2dimX + 1, (29)

wheredim X denotes the covering dimensionof
Proof. We know thatTC(X) < cat(X x X). Combine this with ca}{ x X) <
dim(Xx X) +1=2dimX + 1. O

This result can be improved assuming tias highly connected:

THEOREM 14.2. If X is anr-connected CW-complex then
2-dmX+1
TC(X) < —— + 1L 2
C0 < r+1 - (20)

See Farber (2004) for a proof.

15. A cohomological lower bound for TC)

In this section we describe a result from Farber (2003).
Let k be a field. The cohomologht*(X; k) = H*(X) is a gradedk-algebra
with the multiplication

U H*(X) ® H*(X) = H*(X)

given by the cup-product. The tensor prodttiX) ® H*(X) is again a graded
k-algebra with the multiplication

(UL®VvL) - (l®W) = (—1)|V1"‘UZ|U1U2 ® V1Vao.

Herelv1| and|u,| denote the degrees of cohomology clasgeandu, correspond-
ingly. The cup-product is an algebra homomorphism.

DEFINITION 15.1. The kernel of the homomorphism
U H*(X) @ H*(X) — H*(X)

is called the ideal of the zero-divisors Hf (X). The zero-divisors-cup-length of
H*(X) is the length of the longest nontrivial product in the ideal of the zero-
divisors of H*(X).
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THEOREM 15.2. TC(X) is greater than the zero-divisors-cup-lengthHof(X).
See Farber (2003) for a proof.

16. Examples
EXAMPLE 16.1. Consider the casé= S". Letu € H"(S") be the fundamental
class, and let £ HO(S") be the unit. Then
a=1u-u®le H*(S")®H"(S"
is a zero-divisor. Another zero-divisorlis= u® u. Computinga® = a- awe find
a?=(-1)"t-1) -usu

Hencea? = —2b for n even andi? = 0 for n odd.

We concludethe zero-divisors-cup-length &f*(S"; Q) equalsl for n odd
and 2 for n even Applying Theorem 15.2 we find thatC(S") > 2 for n odd
andTC(S") > 3 for neven. In Section 7 we constructed explicit motion planning
algorithms having topological complexity 2 forodd and 3 fon even. Hence,

if nis odd,

2
ny _ )
TC(SY) = {3, if nis even.

EXAMPLE 16.2. Here we calculate the numbBat (X) whenXis a graph.
THEOREM 16.3. If X is a connected finite graph then

1, ifby(X) = 0,
TC(X) =12, ifby(X) =1,
3, ifby(X)> 1.

Proof. If by(X) = 0 thenX is contractible and henceEC(X) = 1. If by(X) = 1
thenX is homotopy equivalent to the circle and therefd@(X) = TC(S?) = 2,
see above. Assume now thg(X) > 1. Then there exist two linearly independent
classesis, uy € HY(X). Thus

Igu-u®l 1=12

are zero-divisors and their product equads® u; — U1 ® U, # 0 which implies
TC(X) > 3. On the other hand, we know thBC(X) < 3 by Theorem 14.1. This
completes the proof. O
EXAMPLE 16.4. LetX = X4 be a compact orientable surface of gegu$hen

(3 ifg<1,
TC(X)‘{s, ifg>1.

We leave the proof as an exercise.
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17. Simultaneous control of many systems

Suppose that we have to control two systems simultaneously. We assume that the
systems do not interact, i.e., the admissible states of one of the systems do not
depend on the state of the other. DeandY be the corresponding configuration
spaces. If we view these two systems as a new single system then the configuration
space is the produet x Y. For the topological complexity of the product one has

the inequality:

THEOREM 17.1. TC(X x Y) < TC(X) + TC(Y) - L.

A proof can be found in Farber (2003).
Suppose now that one has to control simultaneonslystems having config-
uration spaceXy, ..., Xy. The total configuration space is the Cartesian product

We ask:What is the asymptotics of the topological compleXiB(Y,,) for large
n?

We shall assume that the topological complexity of the sp&ds bounded,
i.e., there exists a constam > 1 such thafTC(X,) < M for all n. Applying
Theorem 17.1 one obtains the inequality

TC(Ya) <n-[M-1]+1 (22)

This shows that the sequent€(Y,) growths at most linearly.
Let us assume additionally that each spdgés path-connected arftbmolog-
ically nontrivial, i.e.,H*(Xn) # H*(pt). Then one has

_ TC(Yp) = n+1. (23)
Proof. Let u, € H'"(X;) be a nontrivial class, wheiig > 0. Denote

Wr=1x1x- XU x1x---x1eH"(Yy)
(hereu, stands on the-th place). Then
n
Wj € H*(Yn)
=1

j
is a nonzero class. The class

Wj=w;®l-1w;, j=1...,n

is a zero-divisor and the product

ﬁv‘vj :(ﬁw,-)@li...;tO
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is nonzero. This proves (22) as follows from the cohomological lower bound.

Combining the inequalities (22) and (23) one obtains:

COROLLARY 17.2. Assume that each spaigis path-connected and homolog-
ically nontrivial and the topological complexifC(X;) is bounded above. Then
the topological complexity of the produdt (see(21)) (viewed as a function of)

has a linear growth. In particular, for any finite-dimensional path-connected and
homologically nontrivial polyhedroiX the sequenc&C(X") as a function oh

has a linear growth.

This result has an important implication in the control theory:

THEOREM 17.3. A centralized control by identical independent systems has
topological complexity which is linear in (more precisely, the inequaliti€g2)

and (23) are satisfiedl The distributed control, i.e., when each of the objects is
controlled independently of the others, has an exponential topological complexity
TC(X)".

We see that in practical situations the centralized control by many independent
objects could be organized so that its “much more stable” than the distributed
control.

18. Another inequality relating TC(X) to the usual category

The result of this section was inspired by a discussion with H.-J. Baues.
Consider the fibration: PX — X x X, cf. Definition 6.1.

LEMMA 18.1. LetU c X x X be a subset. There exists a continuous section
ssU — PX, mos =1y of r overU if and only if the inclusiolJ — X x X is
homotopic to a map with values in the diagon{ c X x X.

Proof. Let sU — PX be a section. Hera(A, B)(t) € X is a continuous
function of A, B, t (where @, B) € U andt € [0, 1]) such thats(A, B)(0) = A
ands(A, B)(1) = B. Define

o U x[0,1] —» X x X

by o(A, B)(t) = (S(A, B)(t), B). Then one has (A, B)(0) = (A, B) ando (A, B)(1) =
(B, B) takes values on the diagona. Henceo is a homotopy between the
inclusionU — X x X and a map with values on the diagonal.

Conversely, suppose that: U — X x X is a homotopy from the inclusion to
a map with values on the diagonal. Thies> o(A, B) is a path inX x X which
starts at f, B) and ends at a poin€(C). In other wordsg(A, B) is a pair {1, y»)
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of paths inX wherey; starts atA, y» starts a3, and the end points of these paths
coincide. Hence the path= ylygl € PXis well-defined, continuously depends
on A and B and starts afA and ends aB. We obtain a continuous section of
overU. ([

COROLLARY 18.2. The topological complexitf C(X) is the smallesk such
that X x X can be covered blyopen subsetd; UU, U - - - U Ui = X x X such that
eachU; — X x X is homotopic to a map with values in the diagona c X x X.

The following inequality complements Lemma 9.2.

LEMMA 18.3. If Xis an ENR then

TC(X) > cal((X x X)/AX) — 1.

Proof.Let X x X = U3 U U, U --- U Uy and eachJ; —» X x X is homotopic
to a map with values in\(X). Let Uj = Uj - A(X) andUJf’ c (X x X)/A(X) be
the image oU’ under the canonical may x X — X x X/AX. ThenU?" is null-
homotopic and these sets cover the whébe X/AX except the base point of the
factor-space. Hence, adding a contractible neighborhood of the base point gives
a categorical cover of the factor-space. Existence of such neighborhood follows
from the ENR assumption. This completes the proof. O

19. Topological complexity of bouquets

It is quite obvious that
TC(XVY) = maxTC(X), TC(Y)}. (24)
We shall prove the following:

THEOREM 19.1. Let X andY be two polyhedrons. ThefC(X Vv Y) is less than
or equal to
maxXTC(X), TC(Y), cat(X) + cat(Y) — 1}. (25)
Proof. The productX v Y) x (X Vv Y) is a union of four spaces

XXX, YXY, XxY, YxX

and any two of these spaces intersect at a single ppjm) (vherep is the join
point of the wedgeX v Y. Over each of these sets one may construct a motion
planning algorithm having respectively

TC(X), TC(Y), catX)+catY)—1, cat(X)+cat®y)-1
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domains of continuity. For example, the algorithm oXex Y takes pairsX, y) €
X x Y as an input and finds a pathin X connectingx with p, a pathg in Y
connectingy with p and finally produces the patf3~ as the output. To make
the choice ofa continuous one has to splK into cat(X) pieces; to make the
choice ofs continuous one split¥ into cat{Y) pieces. Similarly to the proof of the
product inequality (see Farber, 2003, Theorem 11) one may rearrange the totality
of cat(X) x cat(Y) products into cak) + cat(Y) — 1 sets (the checkerboard trick)
such that the algorithm is continuous over each of them.

The remaining arguments of the proof are similar (compare with the next
section), we leave them as an exercise for the reader. O

20. A general recipe to construct a motion planning algorithm

Let X be a path-connected polyhedron anddét= {U1,U,,...,U,} be anice
open cover oiX with the property that each inclusia — X is null-homotopic.
The word ‘hice’ means that the Main assumption (see below) is satisfied. Our
goal isto construct a motion planning algorithm X with 2m — 1 local domains
wheremis the multiplicity of the covering{, i.e., the maximal number of distinct
domainsU; having a nonempty intersection.

Introduce subsetdy, Vo, ..., VimwhereV, c X denotes the set of poinkse X
which are covered by precisetysetsU ;.

Main assumptionEachV; is an ENR.

For any multi-indexx = (1 < iy <ip < --- <y < n) denote

r
U, = Dluik.

Then
V= JUs- | U (26)

lal=r lal=r+1

Note thatV, = @ forr > m.

LEMMA 20.1.
(A) Each seW, = U, NV, (where|a| =) is closed and open iX;.
(B) The sets\, andW; are disjoint fora # g, [a| =1 = |3].
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Proof. Clearlyx € U, N Ug implies thatx € U,g. This implies statement (B).

Now we want to show slightly more, namely, that the dats andW; are
disjoint for o] = r = |8, @ # B. Indeed, ifx € W, N W; thenx = lim x,
wherex, € W,. Sincex lies in Wz one hasx, € W; for all largen and hence
Xn € Uqup ¢ Vr —a contradiction.

These two statements imply that, NV, = W, i.e., W, is closed inV,. As
follows from the definitionW, is also open iV, . O

LEMMA 20.2. One has _
Vi o | Ve 27)

k<r

Proof. It follows directly from (26). O

LEMMA 20.3. Over each seV; x V,» c X x X one may construct an explicit
continuous section of the fibration PX — X x X.

Proof. We know thatV, = |,k W, and eachW, is open and closed i¥.
Hence it is enough to construct a continuous section over\dgchW;. Leti and
j be the smallest indices appearing in the multi-indieesdg correspondingly.
ThenW, c Uj andW; c Uj. Let H:Uj x | - X andH/:Ujx 1 — X be
the homotopies contracting; andU; to the base poinky € X. Then, given a
pair (x,y) € W, x Wz one constructs a path connecting them as follows: it is
concatenation of the path‘(x) leading fromx to the base point and then follows

the reverse path tdl/ (y). O

Denote
Ac= [ VixVeexxx (28)
r+r’=k+1
wherek = 1, 2,...,2m— 1. These sets are ENR’s (by the assumption) and cover
X x X.

LEMMA 20.4. Each productv; x V,,, wherer +r’ = k+ 1, is closed and open
in Ayg.
Proof. It follows from (20.2). O

Hence the described above local sections over &chV,, combine into a
continuous section ove. In total, we have &h — 1 local sections.

21. How difficult is to avoid collisions inR™?

In this section we start discussing the problem of finding the topological complex-
ity TC(F(IR™, n)) of the configuration spade(IR™, n) of n distinct points in the
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Euclidean spac®&™. A motion planning algorithm if-(R™, n) takes as an input
two configurations oh distinct points inR™ and produces continuous curves
Aq(t), ..., An(t) € R™ wheret € [0, 1], such thatAi(t) # A(t) for all t € [0, 1],
i # j and(A1(0),...,An0)) and(A1(1),...,An(1)) are the first and the second
given configurations. In other words, a motion planning algorithnf (™, n)
moves one of the given configurations into another avoiding collisions.

The following theorem was obtained in Farber and Yuzvinsky (2004).

THEOREM 21.1. One has

2n—1 forany oddm
m — il
TC(FMR™.m) = {Zn— 2 form=2
At the moment we do not know the answer for the aase 4 even. We know
that in this case the numb@&C (F(IR™, n)) is either 21— 1 or 2n - 2.
Conjecture. For anyneven one ha3C(F(R™, n)) = 2n- 2.

We will give here some ideas of the proof of Theorem 21.1 referring the reader
to Farber and Yuzvinsky (2004) for details. We will also discuss the possible
approaches to construct explicit motion planning algorithmg ({®™, n). Such
algorithms could be useful in situations when a large number of objects must be
moved automatically (without human intervention) from one position to another
avoiding collisions.

Consider the set

Hij = {(y1,....¥n); i € R™y = yj} c R™

Herei, j € {1,2,...,n},i < j. The setH;; is a linear subspace @&"™ of codimen-
sionm. The system of subspacfd;j}i-j is an arrangement of linear subspaces of
codimensiorm. Our approach to the problem is to view the union

H=Um

as the set of obstacles:
F(R™,n) =R"-H.

22. Thecasan= 2

Assume first thain = 2. This means that we are dealing withlistinct particles
on the plane. Thehljj ¢ C" is a complex subspace of codimension 1.
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Consider a slightly more general situation. L@t = {H} be a finite set of
hyperplanes in anfine complex spac&". Denote byM(A) the complement

M(A) = C" - | ] H.
HeA

We will study the motion planning problem M(A). We may say that we live in
C" and the union of hyperplané$ H represent our obstacles.

Recall some terminology from the theory of arrangements (Orlik and Terao,
1992). IfNpea H # @ thenA is calledcentral and up to change of coordinates
the hyperplanes can be assumed linear. Suppos¢itislinear. For eactd € A
one can fix a linear functionaly (unique up to a non-zero multiplicative constant)
such thaH = {ay = 0}. A set of hyperplanekl; € A is calledlinear independent
if the corresponding functionatsy, are linearly independent. The rank {@fy},

i.e., the cardinality of a maximal independent subset, is calledahk of A
and denoted by rikfl). Clearly rk(A) < n and the equality occurs if and only
|f mH H = 0

If A is not central we define its rank as the rank of a maximal central subar-
rangement ofA.

While dealing with the arrangement complements we will need the following
nontrivial result (Orlik and Terao, 1992jf A is an arbitrary arrangement of
rankr then the complemem (A) has homotopy type of a simplicial complex of
dimensiorr.

Note that the rank of the braid arrangemghif }ij in C" equalsn — 1.

COROLLARY 22.1. The configuration spacg(C, n) has homotopy type of a
simplicial complex of dimensiam— 1.

Combining this with Theorems 10.1 and 14.1 we obtain:
COROLLARY 22.2. TC(F(T,n)) < 2n- 1.
This result can be improved:

THEOREM 22.3. Let A be a central complex hyperplane arrangement of rank
r. Then the topological complexity of the complemd{A) is less or equal than
2r. In particular one hasfC(F(C,n)) < 2n- 2.

Proof.Let A be{Hy,...,H,} c C". Let H; be a parallel copy ofi; which is
disjoint fromHj. Then the intersections

HinHI, i=23....¢

forma (in general, non-central) hyperplane arrangem#enn Hj ~ C" 1 of rank
r — 1. There is a principal*-fibration M(A) — M(A*). The inclusionM(A*) c
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M(A) is a section of it. Hence the fibration is trivitd(A) ~ M(A*) x C* and
using the product inequality (see Theorem 17.1) we find

TC(M(A)) < TC(M(A")) +TC(C*) -1

<
< [2r-1)+1]+2-1=2r O

The opposite inequality requires an additional geometric property of the ar-
rangement:

THEOREM 22.4. Let A be a complex central hyperplane arrangement of rank
r. Assume that there exig&t — 1 hyperplanesHi, Ho, ..., Ho—1 such thatHy,

Ho, ..., H; are independent and for arly < j < r the hyperplanesdj, H;.1,
Hri2,...,Hz—1 are independent. Then one HB€ (M(A)) > 2r.

The proof (see Farber and Yuzvinsky, 2004) uses the cohomological lower
bound for the topological complexity and combinatorics of Orlik—Solomon alge-
bras.

EXAMPLE 22.5. Consider the braid arrangem@t;}i<; c C". Herer =n-1
and 2 - 1 = 2n- 3. We have 8 — 3 hyperplanes:

Hi2, Hia, ..., Hin, Hoz, Hog, ..., Hop

satisfying the condition of the above theorem.

COROLLARY 22.6. One hasTC(F(R2,n)) = 2n— 2.

23. TC(F(IR™, n)) in the casem > 3 odd

Assume that > 3 is odd. TherF(R™, n) is (m— 2)-connected and in particular
it is simply connected. Its cohomology algebra is generated by the cohomology
classes

gj € H™H(FR™ ), i# ]

which arise as follows. Consider the map

. y _y
ij: FR™ ) - 8™, (y1,¥2,...,¥n) P ﬁ e s™1,
1= J]

Then
&j = ¢i*j [S™1

where B™1] is the fundamental class of the sph&®&,
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The cohomology classeg satisfy the following relations:

e,2j =0, and ejej +ejkei+e&iej =0 (29)

for any triplei, j, k. It follows that a product, ,&,j, - - - &,j, is nonzero if and
only if the subgraph of the full graph on verticEk 2,...,n} having the edges
(ir, jr) contains no cycles.

Hence form > 3 the configuration spadeé(R™, n) has homotopy type of a
polyhedron of dimensiog (n — 1)(m - 1). Since it is (n— 2)-connected we may
use inequality (20) of Theorem 14.2 to find

2(n — -
(n—)m l)-'_l+1:2n—1+ .
m-1 m-1

TC(F(R™ n)) <
We obtain:
COROLLARY 23.1. TC(F(R™ n)) < 2n-1.

We want to show that an equality holds in Corollary!23.1. We shall use the
cohomological lower bound (see Theorem 15.2).€jet 1® ; —g; ® L. Itis a
zero-divisor of the cohomology algebra. Note tfe){ = -2 g; ® gj # 0. Here
we use the assumption thatis odd.

Consider the following product

n
T = ]_[(éli)2 cAQA
i=2

We findr = (-2)"*m® m, where

m= ]L[eli.

i=2

The monomiam # 0 is nonzero and hence the prodrds nonzero.

Using the cohomological lower bound for the topological complexity we ob-
tain the opposite inequalitfC(M) > 2n — 1. This completes the proof of Theo-
rem 21.1in the case > 3 odd.

24. Shade

Let X c R" be a closed subset with connected complenight X. Our purpose
is to find (or to estimate) the numb&C(IR" — X). Our main motivation is the
special case wheX = UH is the union of finitely manyfine subspaces.
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DEFINITION 24.1. Letv e S™1be a unit vector. Thehadeof X in the direction
of vis defined as
Shadg(X) = {x+ Av; xe X, 1 € R, }. (30)

In other words we assume that the light illuminating the space arrives from
direction of vector and thatX is not transparent. Then Sha{l€) is precisely the
shaded parts of the space.

Assume thaX c R" satisfies the following conditiorFor any pointp € R"
and for any generic unit vectare S™! the distance

dist(p — v, X) — +c0 (32)

tends to+co as A tends to+oo.

This condition is satisfied in two cases which are particularly important for us:
when eitherX is compact oiX is a union of finitely many iine subspaces. X
is a union of finitely many fiine subspaces then the condition above is satisfied
assuming that the vectwiis not parallel to any of the subspaces.

LEMMA 24.2. If (31)is satisfied then for a generic nonzere R" the distance
dist(p — v, Shadg(X))
tends to+oco asd — +oo.

LEMMA 24.3. If (31)is satisfied then for a generic nonzero vectdhe com-
plement of the shadR" — Shadg(X) is contractible.

Proof. We will show that any compact sé&& c RR" — Shade(X) is null-
homotopic in the complemem" — Shadg(X). Assume thaK is contained in
a ball with centerp € R" and radiusA > 0. Using Lemma 24.2 finda such
that the distance between Shad§ andp — Aavis greater tha\. The homotopy
h : K - R" - Shade(X), t € [0, 1], wherehi(x) = x — Atv, takesK into the ball
with centerp — Aav of radiusA which is disjoint from ShadgX) and hence the
imageh;(K) can be contracted to a point in this ball. O

‘V

X Shade (X)
Figure 16.
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DEFINITION 24.4. LetX c R" be a closed subset satisfying (31). The shading
dimension ofX is defined as the smallestsuch that there exist unit vectors
V1, ..., Vr+1 Such that the intersection

r+1

(") Shadg (X) = X (32)
i=1

equalsX. Equivalently,r + 1 is the minimal number of projectors (placed at
infinity) needed to illuminate the spa@¥' — X.

EXAMPLE 24.5. LetX c R" be a finite seX = {py,..., pm} then its shading
dimension is 1. Indeed, choose a generic unit vestarS" such that no line
throughp; and p; has directioru. Thenu and-u are two directions such that the
intersection of their shades equlsAny line inIR" in the direction oluintersects
X in at most one point and hence the unit vectoend—u illuminate the whole
complemeniR" - X.

THEOREM 24.6. If X c R"is closed subset satisfyir§g1) then for the topolog-
ical complexity of the complemeh€ (R" — X) one has

TCR"-X)<2r+1

wherer is the shading dimension of. Moreover, using the discussion of Sec-
tion 20 one obtains an explicit motion planning algorithmRY — X with < 2r + 1
local rules.

Proof. It follows from the results described above, since

r+1

R" - X = _J(R" - Shadg (X))
i=1

and each ternR" — Shadg (X) is contractible. O

25. llluminating the complement of the braid arrangement

Considern particles inR™ which are disjoint from each other. In this case the
obstacle seK e Rm"x RMx --- x R™=RMis

X:UHij

whereH;j is the linear subspacg = zj, i.e., the particle numbarcollides with
the particle numbey.
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Lete € R™ be a fixed unit vector. Let
v=(0,e2e...,(n—1)e) € R"™

We will consider the shade of in the direction ofv. First note that/ is generic,
i.e., itis not parallel to any of the subspad#s.
Letze R™ be a point. Itdail is defined as the sa@t(z) = {z— 1e; 1 > 0}.

LEMMA 25.1. The shadé&hadg(X) c R coincides with the set of all config-
urations(zi, z, . . ., z,) € R"™, wherez € R™, such that

z € T(z;) foratleastone pair < . (33)

Proof. Consider a configuratiorzf, z,...,z,) € X. Assume that it lies in
Hij, i.e.,z = zj wherei < ]. Then the current configuration of the shade is
(Z.Z,....z) wherez =z +(i—1)1e. We see thaz; -Z = (j—i)2ewhich means
thatz lies in the tail ofz’j, e,z € T(z}).

Conversely, suppose now that we are given a configuratiefiz, z, . . ., z,)
such thatz € T(z) for somei < j. Thenz; = z + (j —i)Aefor somed > 0. We
see that the configuratian = (7, Z,. . .., z)) wherez = z — (r — 1)1e, lies inHj;
and hencelies in the shade o in the direction of vectov. O

Note that the complement of the described set in the configuration space is
indeed contractible (in accordance with Lemma 24.3). Since we have

z¢T(z) foralli<j,

one may first move the poiat far enough in the direction of vectes, there will

be no obstacles. Then one moves the paint again in the direction of-e also

far, but closer tham,. And so on: each next point is moved not that far so that the
points after the motion lie in élierent slices oR™ (no interactions).

26. A quadratic motion planning algorithm in F(IR™, n)

Combining the general recipe for constructing motion planning algorithms de-
scribed in Section 20 with Theorem 24.6 and the results of Section 25, one may

4
Z
T(z)

Figure 17.
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construct an explicit motion planning algorithm withn? local rules wheren is
the number of particles. In this section we briefly explain how such algorithm can
be built.

Fix distinct unit vector®y, e, ...,ey € R™, where

nin-1)
2
Then for any configuratioa = (z,...,z,) € F(R™, n) wherez # zj;,z € R™,

there exists X r < N such that the vectag (one of theN fixed unit vectors) is
distinct from all vectors

N = + 1.

iz -z’
Therefore the configuratianlies in the complement of the shade

foralli < j.

R"™ - Shadg (X).

HenceN contractible setR"™ — Shadg (X), wherer = 1,...,N, cover the
complemenfR"™ — X. By the construction of Section 20 this leads to a motion
planning algorithm with

2N-1=n’-n+1

local rules.

27. Configuration spaces of graphs

Here we will discuss the configuration spaded’, n) whereT is a connected
graph. These spaces were studied by Ghrist (2001), Ghrist and Koditschek (2002)
and Abrams (2002); see also Gal (200%yyiakowski (2001). To illustrate the
importance of these configuration spaces for robotics one may mention the control
problems where a number of automated guided vehicles (AGV) have to move
along a network of floor wires. The motion of the vehicles must be safe: it should
be organized so that the collisions do not occun i$ the number of AGV then
the natural configuration space of this probler& (£, n) wherer is a graph.

The first question to ask is whether the configuration sgaggn) is con-
nected. Clearly (I, n) is disconnected i = [0, 1] is a closed interval (and > 2)
orif I = St is the circle andh > 3. These are the only examples of this kind as
the following simple lemma claims:

LEMMA 27.1. LetT be a connected finite graph having at least one essential
vertex. Then the configuration spa€f’, n) is connected.

An essential vertex is a vertex which is incident to 3 or more edges.
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&

Ks K33

Figure 18.

THEOREM 27.2. LetI" be a connected graph having an essential vertex. Then
the topological complexity d¥(T", n) satisfies

TC(F(,n)) <2m(I) + 1, (34)
wherem(I') denotes the number of essential verticeE.in
A proof can be found in Farber (2005).

THEOREM 27.3. LetI be a tree having an essential vertex. bdie an integer
satisfyingn > 2m(I") wherem(I") denotes the number of essential verticeE.dh
the casen = 2 we will additionally assume that the tré&eis not homeomorphic
to the letterY viewed as a subset of the plaR&. Then the upper boun(84) is
exact, i.e.,

TC(F(T,n)) =2m(I) + 1. (35)

Farber (2005) contains a sketch of the proof and also an explicit description of
a motion planning algorithm ik (I", n) (assuming thd is a tree) having precisely
2m(I') + 1 domains of continuity.

If T is homeomorphic to the lettéf thenm(I') = 1 andF(T, 2) is homotopy
equivalent to the circl&!. Hence in this cas&C(F (T, 2)) = 2. The equality (35)
fails in this case.

For any tred” one hasTC(F(T’, 2)) = 3 assuming thdt is not homeomorphic
to the lettery. This shows that the assumptiore 2m(I") of Theorem 27.3 cannot
be removed: if" is a tree withm(I') > 2 then the inequality above would give
TC(F(,2) =2m() + 1 > 5.

Here are more examples. For the graplsakd Kg 3 (Figure 18) one has

TC(F(Ks,2)) = TC(F(K33,2)) = 5. (36)
In these examples the equality (35) is violated.

28. Motion planning in projective spaces

Next we consider the problem of computing the topological complexity of the
real projective spaces. We will follow Farber et al. (2003) which shows that the
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A B

Figure 19.

problem of computing the numb@&IC(IRP") is equivalent to a classical problem
of manifold topology which asks what is the minimal dimension of the Euclidean
spaceN such that there exists an immersiB®" — RN. The immersion prob-
lem for the real projective spaces was studied by many people and a variety of
important results was obtained. However at the moment the immersion dimension
of RP" as a function ofiis not known. We refer to a recent survey (Davis, 1993).

The problem of finding motion planning algorithms in the projective space
RP" can be viewed as an elementary problem of topological robotics. Indeed,
points of RP" represent lines through the origin in the Euclidean sfiité and
hence a motion planning algorithm iRP" should describe how a given likein
R™* should be moved to another prescribed posiBon

Lines through the origin ifR3 may represent metallic bars fixed at the fixed
point by a revolving joint; this situation is common in the practical robotics.

If the angle between the lingsandB is acute then one may rotatetoward
B in the two-dimensional plane spannedAyndB such thatA sweeps the acute
angle. Hence the problem reduces immediately to the special case when the lines
AandB are orthogonal. In this case, if the intention is to use simple rotations, one
needs a continuous choice of the direction of rotation in the plane spann&d by
andB.

Note that the Lusternik— Schnirelmann category of the real projective spaces
is well known and easy to compute: dA®") = n+1. Using the general properties
of the topological complexity mentioned above we may write

n+1<TC(RP") <2n+1

We shall see below (see Corollary 30.4) that in fB€{(IRP") < 2n for all n; the
equality holds ifnis a power of 2.
The answer in the complex case is much simpler:

LEMMA 28.1. TC(CP") = 2n + 1. More generally, for any simply connected
symplectic manifold/l one has

TC(M) = dimM + 1.
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Proof. Let u € H2(M) be the class of the symplectic form. We have a zero-
divisoru® 1 — 1 ® u satisfying

2
Uol-1eu)? = (—1)”( nn)u“ @u’

where 21 = dim M. The cohomological lower bound givdsC(M) > 2n + 1.
The cohomological upper bound of Farber (2004) (using the assumptioM tisat
simply connected) gives the opposite inequali§(M) < 2n + 1. O

THEOREM 28.2. If n > 2" thenTC(RP") > 2".
Proof. Let @« € HY(RP"; Z») be the generator. The classx 1 + 1 x « is a
zero-divisor. Consider the power

(ax1+1x a)zr‘l.

Assuming that 21 < n < 2" it contains the nonzero term
2r -1
( )a/k ®a"
n

wherek = 2" — 1 — n < n. Applying the cohomological lower bound the result
follows. O

29. Nonsingular maps

The main result concerningC(RP") (see Theorem 29.2) uses the following
classical notion:

DEFINITION 29.1. A continuous map
f:R"xR" - RX (37)
is called nonsingular if:

(@) f(au,uv) = Auf(u,v) forallu,ve R", A4, u € R, and
(b) f(u,v) = 0implies that eitheu = 0, orv = 0.

In the mathematical literature there exist several variations of the notion of a
nonsingular map. We refer to Lam (1967) and Milgram (1967) where nonsingular
maps (of a dferent type) were used to construct immersions of real projective
spaces into the Euclidean space.

Problem.Givenn find the smallesk such that there exists a honsingular map
f:R"x R" - RK.
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Let us show that for angthere exists a nonsingular mapR"xR" — R?"1,
Fix a sequences, ay, ..., az-1: R" — R of linear functionals such that amyof
them are linearly independent. Farv € R" the valuef(u,v) € R*"! is defined
as the vector whosgh coordinate equals the produgf(u)aj(v), wherej = 1,
2,...,2n—=1.If u # 0 then at leash among the numbeg,(u), ..., azn-1(U) are
nonzero. Hence il # 0 andv # O there existg such thatrj(u)a;(v) # 0 and thus
f(u,v) # 0e R,

Remarks.

1. Fork < nthere exist no nonsingular mapsR" x R" — RX (as follows from
the Borsuk —Ulam theorem).

2. Forn =1, 2, 4, 8 there exist nonsingular mafidR" x R" — R" having an
additional property that for any e R", u # 0 the first coordinate of (u, u) is
positive.

These maps use the multiplication of the real numbers, the complex numbers,
the quaternions, and the Cayley numbers, correspondingly.

3. Forndistinct from 1, 2, 4, 8 there exist no nonsingular mapR"xR" — R"
(as follows from the famous theorem of J. F. Adams).

Here is the main theorem of Farber et al. (2003):

THEOREM 29.2. The numbefTC(IRP") coincides with the smallest integlkr
such that there exists a nonsingular mMap! x R™! — RK.

We refer to Farber et al. (2003) for the proof. Here we will only explain
(following Farber et al., 2003) how one uses the nonsingular maps to construct
motion planning algorithms.

PROPOSITION 29.3.1f there exists a nonsingular map™! x R™! — RX with

n+1 < kthenRP" admits a motion planner witklocal rules, i.e.,TC(RP") < k.
Proof.Let®: R™1xR™! — R be a scalar continuous map such @i, uv)

= dup(u,v) forallu,ve Vanda, u € R. LetUy c RP" x RP" denote the set of

all pairs @, B) of lines inR™* such thatA # B and¢(u, V) # 0 for some points

ue€ Aandv € B. Itis clear thatU, is open.

There exists a continuous madefined onU, with values in the space of
continuous paths in the projective spaRe" such that for any pairA, B) € Uy
the paths(A, B)(t), t € [0, 1], starts atA and ends aB. One may find unit vectors
u € Aandv € B such thaty(u,v) > 0. Such paituy, v is not unique: instead af,

v we may take-u, —v. Note that both pairs, v and—-u, —v determine the same
orientation of the plane spanned AyB. The desired map consists in rotatingh
towardB in this plane, in the positive direction determined by the orientation.
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Assume now additionally that R™!xR™! — R is positivein the following
sense: for any € R™Y, u # 0, one hag(u, u) > 0. Then instead of), we may
take a slightly larger se!]i;5 c RP" x RP", which is defined as the set of all pairs

of lines (A, B) in R™* such thatp(u,v) # 0 for someu € A andv € B. Now all
pairs of lines of the formA4, A) belong toU(;. For A # B the path fromA to B
is defined as above (rotatidgtowardB in the plane, spanned kByandB, in the
positive direction determined by the orientation), and4o& B we choose the
constant path a. Then continuity is not violated.

A vector-valued nonsingular majp R™! x R™! — Rk determinek scalar
mapsés, . .., ¢: R™! x R™1 — R (the coordinates) and the described above
neighborhoodd) 4, cover the producRP" x RP" minus the diagonal. Sinae+ 1
< k one may replace the initial nonsingular map by suchf @hat for anyu €
R™1, u # 0, the first coordinate (u, u) of f(u, u) is positive. Now, the open sets
Uj, Ugss -, Ug, coverRP" x RP". We have described explicit motion planning
strategies over each of these sets. TherefF@ERP") < k.

30. TC(RP") and the immersion problem

THEOREM 30.1. For anyn # 1, 3, 7 the numbefTC(IRP") equals the smallest
k such that the projective spa@P" admits an immersion intiRk1,

The proof (see Farber et al., 2003) uses Theorem 29.2 and the following
theorem of Adem et al. (1972):

THEOREM 30.2. There exists an immersidRP” — RX (wherek > n) if and
only if there exists a nonsingular ma™! x R™! — R<L,

We will give here a direct construction of a motion planning algorithi F'
starting from an immersioRP" — RX.

THEOREM 30.3. Suppose that the projective spaR€" can be immersed into
RK. ThenTC(RP") < k + 1.

Proof. ImagineIRP" being immersed int@RX. Fix a frame inR¥ and extend
it, by parallel translation, to a continuous field of frames. Projecting orthogonally
onto RP", we findk continuous tangent vector fields, vo, ..., vk on RP" such
that the vectors;(p) (wherei = 1,2,...,k) span the tangent spadg(IRP") for
anyp € RP".

A nonzero tangent vecterto the projective spacBP" at a pointA (which we
understand as a line IR™') determines a ling in R™?*, which is orthogonal to
A i.e.,V L A. The vectow also determines an orientation of the two-dimensional
plane spanned by the linédsandv, see Figure 20.
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A 9

Figure 20.

Fori=1,2...,kletU; c RP"x RP" denote the open set of all pairs of lines
(A, B) in R™?! such that the vectar(A) is nonzero and the linB makes an acute
angle with the linev;(A). Let Ug ¢ RP" x RP" denote the set of pairs of lines
(A, B) in R™! making an acute angle.

The setdJg, Us, ..., Uy coverRP" x RP". Indeed, given a pair4, B), there
existindices I<ij < --- < ip < ksuch that the vectong (A), wherer = 1,...,n,
span the tangent spa€&(IRP"). Then the lines

A VLA, ... Vi, (A)

span the Euclidean spai"*! and therefore the linB makes an acute angle with
one of these lines. Hencé),(B) belongs to one of the setk, Uj,, ..., U;,.

We may describe a continuous motion planning strategy over eadl; set
wherei = 0, 1,...,k. First define it oveldy. Given a pair A, B) € Ug, rotateA
toward B with constant velocity in the two-dimensional plane spanned fayd
B so thatA sweeps the acute angle. This defines a continuous motion planning
sectionsy: Ug — P(RP"). The continuous motion planning strategyU; —
P(RP"), wherei = 1, 2...,k, is a composition of two motions: first we rotate
line A toward the Iinevﬁﬂ) in the in the 2-dimensional plane spannedAgnd
vi/(K) in the direction determined by the orientation of this plane (see above). On
the second step rotate the Iim@) toward B along the acute angle similarly to
the action of. O

COROLLARY 30.4. One hasTC(RP") < 2n.

Proof. The casen = 1 is trivial. Forn > 1 by the Whitney immersion the-
orem there exists an immersid@P" — R?"1. The result now follows from
Theorem 30.3. O

Below is the table of the valug&C (RP") for n < 23, see Farber et al. (2003).
It is obtained by combining the results mentioned above with the information on
the immersion problem available in the literature.
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TABLE I.

n 1 2 3 4 5 6 7 8 9 10 11 12
TCRP") 2 4 4 8 8 8 8 16 16 17 17 19

n 13 14 15 16 17 18 19 20 21 22 23
TC(RP) 23 23 23 32 32 33 33 35 39 39 39

As explained in Farber et al. (2003) explicit motion planning algorithms in
RP" with n < 7 could be constructed using the multiplication of the complex

numbers, the quaternions, and the Cayley numbers.

31. Some open problems

Finally we mention several open problems concerning the homotopy invariant
TC(X).

1. Rational version offC(X). It can be “formally” defined agC(Xg). One
should be able to express this number in terms of Sullivan’s minimal model.
This result may give stronger (more sophisticated) lower bounds than the
cohomological lower bound mentioned above.

The rational version of the LS category was introduced by Felix and Halperin
(1982).

2. Symmetric motion planningdne may decide to impose on the motion plan-
ning algorithmss: X x X — PX two additional (quite natural) conditions:
(@) The paths(A, A) is a constant path at poid; (b) For A # B one has
(A, B)(t) = (B, A)(1 - t). In other words, the motion frorB to A goes along
the same route as the motion fre%to B but in the reverse order.

The appropriate numerical invariah€ S(X) measuring the topological com-
plexity is defined asne plus the Schwartz genus of the fibration

(P’X)/Zo —» (XX X = A)/Z>.
HereP’ X is the set of pathsg: [0, 1] — X with v(0) # y(1).

It has the following properties: (AJCS(X) > TC(X); (B) In some examples
TCS(X) > TC(X); (C) The numbeTCS(X) is not a homotopy invariant of.

Problem.Find a cohomological lower bound faiCS(X).

3. Motion planning in aspherical space§he problem is to compufeC(X) in
the case when the polyhedrris aspherical, i.esj(X) = 0 for alli > 1. The
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homotopy type of an aspherical spasedepends only on the fundamental
groupr = m1(X). Hence in this case the numBbEE (X) depends only on the
groupr viewed as a discrete group. One should be able to express the number
TC(X) in terms of the algebraic properties of the graypX).

A similar question for the Lusternik—Schnirelmann category was solved by
Eilenberg and Ganea (1957). Their theorem stdtesis aspherical then

cat(X) — 1 = dimx = geomdinmr (38)

except3 special low-dimensional casedere dimr is the leasin such that
HY(r; A) = 0 for any moduleA and for anyg > n. The symbol geom dim
denotes the smallest dimension df ér, 1)-complex.
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