6. TENSOR, SYMMETRIC AND EXTERIOR ALGEBRAS
6.1. The tensor algebra of a module. Let M be an R-module. For each
kE>1let TF(M) =M ®pg ... ®p M and set T°(M) = R. Define

k times
T(M)=ReT (M) T*(M)® ... =X T8M)

We already have an R-module structure on 7'(M). Define multiplication on
T (M) by setting

(M ®@...0m) - (M ®@...0mj)=mo...0mm;®.. Qm;

and extending to arbitrary elements of T'(M) by R-bilinearity.

That this multiplication is well defined can be proved similarly to what
we did in the case of tensor products of algebra. It is easy to see that T'(M)
becomes an R-algebra. Furthermore, by construction T%(M) - T7(M) C
T (M), so T(M) = @3 ,TF(M) is actually a graded R-algebra. The
algebra T'(M) is called the tensor algebra of M.

Proposition 6.1 (Universal property of tensor algebras). Let M be an
R-module and A an R-algebra. Then for any R-module homomorphism

w: M — A there exists unique R-algebra homomorphism ® : T(M) — A

s.t. @ = p.
M —T(M)
X l‘l’
A
Proof. Exercise (or see [DF,Theorem 31 on p.442]). O
Proposition 6.2. Let M be a free R-module of rank n with basis eq, ..., ey.
Then

(a) For any k > 1, T*(M) is a free R-module of rank n*, and simple
tensors e, @ ... ® e;, form a basis of TF(M).
(b) T(M) is isomorphic to R(x1,...,x,) (polynomials in non-commuting

variables) as graded R-algebras.

Proof. (a) By Example 4.3 if M is a free R-module with basis eq, ..., e, and
N is a free R-module with basis f1,..., fi, then M ® g N is a free R-module
with basis {e; ® f;}. The assertion of (a) follows from this by induction.
(b) Define @ : R{x1,...,z,) — T (M) by setting

) (Z T(iy,.iy) Tiy - - - l‘lk) = Z T(iy,....ix) €in X... Q€.
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Then @ is an homomorphism of graded R-algebras (by definition of the
algebra structure on T'(M)), and part (a) implies that ® is bijective. O

6.2. Symmetric and exterior algebras.

Definition. Let M be an R-module, T'(M) its tensor algebra and C(M)
the ideal of T' (M) generated by elements of the form my ® ma — mo ® my
for my, mg € M. The quotient algebra S(M) = T'(M)/C(M) is called the

symmetric algebra of M.

Remark: 1. For each k& > 1 let S¥(M) be the image of T*(M) in S(M).
The ideal C'(M) is graded since it is generated by homogeneous elements,
and therefore by Proposition 5.2 S(M) is also a graded algebra with grading
S(M) = @52 ,SH(M).

2. S(M) is a commutative R-algebra. Indeed, T'(M) is generated as a
ring by T9(M) = R and T*(M) = M, and therefore S(M) is generated as a
ring by S%(M) and S'(M). Note that S°(M) lies in the center of S(M) (for
TO(M) lies in the center of T'(M)), and by construction any two elements of
S1(M) commute. Thus, S(M) is generated by a set of pairwise commuting

elements, and therefore S(M) is commutative.

Proposition 6.3. Let M be a free R-module of rank n with basis e, ..., en.
Then S(M) is isomorphic to R[z1,...,xy] (polynomials in commuting vari-

ables) as graded R-algebras.
Proof. Exercise. O

Definition. Let M be an R-module, T'(M) its tensor algebra and A(M)
the ideal of T'(M) generated by elements of the form m&m for m € M. The
quotient algebra A\(M) =T (M)/A(M) is called the exterior algebra of M.

The product in A(M) is denoted by the symbol A. Thus given elements
mi,...,mi € M we denote by m1 A ... A my the image of m ® ... ® my in
A(M).

Similarly to the case of symmetric algebras, the exterior algebra A (M)
has a natural grading \(M) = @2, NF(M) where A\F(M) is the image of
TF(M) in \(M).

Proposition 6.4. Let M be a free R-module of rank n with basis e, ..., e,.
The following hold:

(i) A(M) is isomorphic as an R-algebra to R(x1,...,xy)/I where I is
the ideal generated by {x?,x;x; + x;x;}. Therefore, N(M) has the



following presentation by generators and relations in the category of

R-algebras:
/\(M)z(el,...jen\ei/\ei:() and e; Nej = —ej Ne; for 1 <i,j < n).

(i) Letk > 1. Then N¥(M) is a free R-module with basis {e;, A. . ANeg b
where iy < ... <'iy. In particular, rk(\*(M)) = (3)-
(iii) A(M) is a finitely generated free R-module of rank 2™.

Proof. For (ii) see [DF,Corollary 37, p. 449], and (iii) follows from (ii) since
> k>0 (}) =2". Let us prove (i).
Let ® : R(z1,...,x,) — T(M) be the isomorphism from Proposition 6.2.
Then \(M) = R{x1,...,z,)/J where J = ®~1(A(M)) is the image of A(M)
under ®~!. It is clear from the definition of ® that .J is the ideal generated
by {(riz1+...+rpz,)? 1 7; € R}. We claim that J = I, for which it suffices
to show that I contains generators of J and J contains generators of I.
The former is clear since
(riay + ... Fran)’ = Z riz? 4 Z rirj(xixy + xjx;) € 1
i i<j

(and thus J C I). The reverse inclusion follows from the observation that
ziw; + zjr; = (v + x5)% — 2F — x? e J.

This proves the first assertion of (i), and the second assertion (regarding
the presentation by generators and relations) is simply a restatement of the
first one. O

6.3. An interesting property of exterior algebras. Let M and N be R-
modules and ¢ : M — N an R-module homomorphism. By Proposition 6.1
¢ yields a graded R-algebra homomorphism & : T'(M) — T(N) such that
S(m1 @ ... mg) = p(m1) ® ...p(mg). It is easy to see that & maps
C(M) to C(N) and A(M) to A(N), and thus ® induces graded R-algebra
homomorphisms @y, : S(M) — S(N) and Peyy : A(M) — A(N)

Now assume that R is a field, M is vector space over R of finite dimension
nand N = M, so ¢ : M — M is an R-linear transformation. For each k we

can restrict ®egy to A¥(M) to get an R-linear transformation

k k
(I)ext,k : /\(M) - /\(M)
Consider the case k = n = dim M. Since dim A"(M) = (7) = 1 by Propo-

sition 6.4(ii), the map ®¢yt p is just multiplication by some scalar r(®) € R.
Proposition 6.5. The scalar r(®) is equal to det .

Proof. Let us see what happens when n = 2. Let {e1,e2} be a basis of M.
Then by Proposition 6.4(b) A*(M) is R-spanned by the element e; A es.
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Now let ¢ : M — M be a linear transformation, and let A = ( Ccl Z )

be the matrix of ¢ with respect to {e1, ez}, so that ¢(e;) = ae; + ceg and
o(ea) = bey + des.

Then by our construction @y 2(e1 Aez) = (aeq + cez) A (ber + dez), and
using anticommutativity and distributivity we get
(ae1 4 cea) A (bey + deg) = abey A ey + adey A e + cbea A ey + cdea N ey =
(ab— cd)er N ez = det(p)er A ea.

Generalization of this proof to arbitrary n is a homework problem. O



