
Why study matrix
groups?

A matrix group means a group of invertible matrices. This defini-
tion sounds simple enough and purely algebraic. You know from lin-
ear algebra that invertible matrices represent geometric motions (i.e.,
linear transformations) of vector spaces, so maybe it’s not so surpris-
ing that matrix groups are useful within geometry. It turns out that
matrix groups pop up in virtually any investigation of objects with
symmetries, such as molecules in chemistry, particles in physics, and
projective spaces in geometry. Here are some examples of how amaz-
ingly ubiquitous matrix groups have become in mathematics, physics
and other fields:

• Four-dimensional topology, particle physics and Yang-Mills
connections are inter-related theories based heavily on ma-
trix groups, particularly on a certain double-cover between
two matrix groups (see Section 8.7).

• Movie graphics programmers use matrix groups for rotat-
ing and translating three-dimensional objects on a computer
screen (see Section 3.6).

• The theory of differential equations relies on matrix groups,
particularly on matrix exponentiation (see Chapter 6).
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• The shape of the universe might be a quotient of a certain
matrix group, Sp(1), as recently proposed by Jeff Weeks
(see Section 8.6). Weeks writes, “Matrix groups model pos-
sible shapes for the universe. Conceptually one thinks of the
universe as a single multi-connected space, but when cosmol-
ogists roll up their sleeves to work on such models they find
it far easier to represent them as a simply connected space
under the action of a matrix group.”

• Quantum computing is based on the group of unitary matri-
ces (see Section 3.2). William Wootters writes, “A quantum
computation, according to one widely used model, is nothing
but a sequence of unitary transformations. One starts with
a small repertoire of simple unitary matrices, some 2×2 and
some 4 × 4, and combines them to generate, with arbitrar-
ily high precision, an approximation to any desired unitary
transformation on a huge vector space.”

• In a linear algebra course, you may have learned that cer-
tain types of matrices can be diagonalized or put into other
nice forms. The theory of matrix groups provides a beauti-
fully uniform way of understanding such normal forms (see
Chapter 9), which are essential tools in disciplines ranging
from topology and geometry to discrete math and statistics.

• Riemannian geometry relies heavily on matrix groups, in
part because the isometry group of any compact Riemannian
manifold is a matrix group. More generally, since the work
of Klein, the word “geometry” itself is often understood as
the study of invariants of the action of a matrix group on a
space.

Matrix groups are used in algebraic geometry, complex analysis,
group and ring theory, number theory, quantum physics, Einstein’s
special relativity, Heisenberg’s uncertainty principle, quark theory,
Fourier series, combinatorics, and many more areas; see Howe’s arti-
cle [10]. Howe writes that matrix groups “touch a tremendous spec-
trum of mathematical areas...the applications are astonishing in their
pervasiveness and sometimes in their unexpectedness.”
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You will discover that matrix groups are simultaneously algebraic
and geometric objects. This text will help you build bridges between
your knowledge of algebra and geometry. In fact, the beautiful rich-
ness of the subject derives from the interplay between the algebraic
and geometric structure of matrix groups. You’ll see.

My goal is to develop rigorously and clearly the basic structures
of matrix groups. This text is elementary, requires few prerequisites,
and provides substantial geometric motivation. Whenever possible,
my approach is concrete and driven by examples. Exploring the sym-
metries of a sphere is a motivating thread woven through the text,
beginning with the cover artwork. You will need only the following
prerequisites:

• Calculus: topics through multivariable calculus, with a
brief introduction to complex numbers including Euler’s for-
mula

eiθ = cos(θ) + i sin(θ).

• Linear Algebra: determinant, trace, eigenvalues, eigen-
vectors, vector spaces, linear transformations and their re-
lationship to matrices, change of basis via conjugation.

• Abstract Algebra: groups, normal subgroups, quotient
groups, abelian groups, fields.

• Analysis (optional): topology of Euclidean space (open,
closed, limit point, compact, connected), sequences and se-
ries, continuous and differentiable functions from Rm to Rn,
the inverse function theorem.

The analysis prerequisites are optional. I will develop these analysis
topics from scratch for readers seeing this material for the first time,
but since this is not an analysis textbook, I will not feel obliged to
include complete proofs of analysis theorems.

I believe that matrix groups should become a more common staple
of the undergraduate curriculum; my hope is that this text will help
allow a movement in that direction.
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Chapter 1

Matrices

In this chapter, we define quaternionic numbers and discuss basic al-
gebraic properties of matrices, including the correspondence between
matrices and linear transformations. We begin with a visual example
that motivates the topic of matrix groups.

1. Rigid motions of the sphere: a motivating
example

The simplest interesting matrix group, called SO(3), can be described
in the following (admittedly imprecise) way:

SO(3) = all positions of a globe on a fixed stand.

Three elements of SO(3) are pictured in Figure 1. Though the globe
always occupies the same place in space, the three elements differ in
the directions where various countries face.

Figure 1. Three elements of SO(3).

Let’s call the first picture “the identity”. Every other element of
SO(3) is achieved, starting with the identity, by physically moving
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6 1. Matrices

the globe in some way. SO(3) becomes a group under composition of
motions (since different motions might place the globe in the same po-
sition, think about why this group operation is well-defined). Several
questions come to mind.

Question 1.1. Is SO(3) an abelian group?

The North Pole of the globe faces up in the identity position.
Rotating the globe around the axis through the North and South Pole
provides a “circle’s worth” of elements of SO(3) for which the North
Pole faces up. Similarly, there is a circle’s worth of elements of SO(3)
for which the North Pole is located as in picture 2, or at any other
point of the globe. Any element of SO(3) is achieved, starting with
the identity, by first moving the North Pole to the correct position and
then rotating about the axis through its new position. It is therefore
natural to ask:

Question 1.2. Is there a natural bijection between SO(3) and the
product S2 × S1 := {(p, θ) | p ∈ S2, θ ∈ S1}?

Here S2 denotes the sphere (the surface of the globe) and S1

denotes the circle, both special cases of the general definition of an
n-dimensional sphere:

Sn := {(x1, ..., xn+1) ∈ Rn+1 | x2
1 + · · · + x2

n+1 = 1}.

Graphics programmers, who model objects moving and spinning in
space, need an efficient way to represent the rotation of such objects.
A bijection SO(3) ∼= S2 ×S1 would help, allowing any rotation to be
coded using only three real numbers – two which locate a point of S2

and one angle which locates a point of S1. If no such bijection exists,
can we nevertheless understand the shape of SO(3) sufficiently well
to somehow parameterize its elements via three real numbers?

One is tempted to refer to elements of SO(3) as “rotations” of
the sphere, but perhaps there are motions more complicated than
rotations.

Question 1.3. Can every element of SO(3) be achieved, starting
with the identity, by rotating through some angle about some single
axis?
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If so, then for any element of SO(3), there must be a pair of
antipodal points of the globe in their identity position.

You might borrow your roommate’s basketball and use visual in-
tuition to guess the correct answers to Questions 1.1, 1.2 and 1.3. But
our definition of SO(3) is probably too imprecise to lead to rigorous
proofs of your answers. We will return to these questions after de-
veloping the algebraic background needed to define SO(3) in a more
precise way, as a group of matrices.

2. Fields and skew-fields

A matrix is an array of numbers, but what type of numbers? Matrices
of real numbers and matrices of complex numbers are familiar. Are
there other good choices? We need to add, multiply and invert ma-
trices, so we must choose a number system with a notion of addition,
multiplication, and division; in other words, we must choose a field
or a skew-field.

Definition 1.4. A skew-field is a set, K, together with operations
called addition (denoted “+”) and multiplication (denoted “·”) satis-
fying:

(1) a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a.

(2) K is an abelian group under addition, with identity denoted
as “ 0”.

(3) K−{0} is a group under multiplication, with identity denoted
as “ 1”.

A skew-field in which multiplication is commutative (a · b = b · a) is
called a field.

The real numbers, R, and the rational numbers, Q, are fields.
The plane R2 is NOT a field under the operations of component-wise
addition and multiplication:

(a, b) + (c, d) := (a + c, b + d)

(a, b) · (c, d) := (ac, bd),

because, for example, the element (5, 0) does not have a multiplicative
inverse (no element times (5, 0) equals (1, 1), which is the only possible
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identity element). A similar argument shows that for n > 1, Rn is
not a field under component-wise addition and multiplication.

In order to make R2 into a field, we use component-wise addition,
but a more clever choice of multiplication operation is:

(a, b) · (c, d) := (ac − bd, ad + bc).

If we denote (a, b) ∈ R2 symbolically as a+bi, then this multiplication
operation becomes familiar complex multiplication:

(a + bi) · (c + di) = (ac − bd) + (ad + bc)i.

It is straightforward to check that R2 is a field under these operations;
it is usually denoted C and called the complex numbers.

3. The quaternions

Is it possible to contrive a multiplication operation which, to-
gether with component-wise addition, makes Rn into a skew-field for
n > 2? This is an important and difficult question. In 1843 Hamilton
discovered that the answer is yes for n = 4.

To describe this multiplication rule, we will denote an element
(a, b, c, d) ∈ R4 symbolically as a + bi + cj + dk. We then define a
multiplication rule for the symbols {1, i, j,k}. The symbol “1” acts
as expected:

i · 1 = 1 · i = i, j · 1 = 1 · j = j k · 1 = 1 · k = k.
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The other three symbols square to −1:

i2 = j2 = k2 = −1.

Finally, the product of two of {i, j,k} equals plus or minus the third:

i · j = k, j · k = i, k · i = j,

j · i = −k, k · j = −i, i · k = −j.

This sign convention can be remembered using Figure 2.

i

jk

Figure 2. The quaternionic multiplication rule.

This multiplication rule for {1, i, j,k} extends linearly to a mul-
tiplication on all of R4. For example,

(2 + 3k) · (i + 7j) = 2i + 14j + 3ki + 21kj

= 2i + 14j + 3j− 21i

= −19i + 17j.

The product of two arbitrary elements has the following formula:

(1.1) (a + bi + cj + dk) · (x + yi + zj + wk)

= (ax − by − cz − dw) + (ay + bx + cw − dz)i

+ (az + cx + dy − bw)j + (aw + dx + bz − cy)k.

The set R4, together with component-wise addition and the above-
described multiplication operation, is denoted as H and called the
quaternions. The quaternions have proven to be fundamental in sev-
eral areas of math and physics. They are almost as important and as
natural as the real and complex numbers.

To prove that H is a skew-field, the only difficult step is verifying
that every non-zero element has a multiplicative inverse. For this, it
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is useful to define the conjugate and the norm of an arbitrary element
q = a + bi + cj + dk ∈ H as follows:

q̄ = a − bi − cj− dk

|q| =
√

a2 + b2 + c2 + d2.

It is straightforward to check that q · q̄ = q̄ · q = |q|2 and therefore
that q̄

|q|2 is a multiplicative inverse of q.

The rule for multiplying two quaternions with no k or j compo-
nents agrees with our multiplication rule in C. We therefore have
skew-field inclusions:

R ⊂ C ⊂ H.

Any real number commutes with every element of H. In Exercise 1.18,
you will show that only real numbers have this property. In particular,
every non-real complex numbers fails to commute with some elements
of H.

Any complex number can be expressed as z = a + bi for some
a, b ∈ R. Similarly, any quaternion can be expressed as q = z + wj
for some z, w ∈ C, since:

a + bi + cj + dk = (a + bi) + (c + di)j.

This analogy between R ⊂ C and C ⊂ H is often useful.

In this book, the elements of matrices are always either real, com-
plex, or quaternionic numbers. Other fields, like Q or the finite fields,
are used in other branches of mathematics but for our purposes would
lead to a theory of matrices with insufficient geometric structure. We
want groups of matrices to have algebraic and geometric properties,
so we restrict to skew-fields that look like Rn for some n. This way,
groups of matrices are subsets of Euclidean spaces and therefore in-
herit geometric notions like distances and tangent vectors.

But is there a multiplication rule which makes Rn into a skew-
field for values of n other than 1, 2 and 4? Do other (substantially
different) multiplication rules for R1, R2 and R4 exist? Can R4 be
made into a field rather than just a skew-field? The answer to all of
these questions is NO. More precisely, Frobenius proved in 1877 that
R, C and H are the only associative real division algebras, up to the
natural notion of equivalence [4].
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Definition 1.5. An associative real division algebra is a real vec-
tor space, K, with a multiplication rule, which is a skew-field under
vector-addition and multiplication, such that for all a ∈ R and all
q1, q2 ∈ K:

a(q1 · q2) = (aq1) · q2 = q1 · (aq2).

The final hypothesis relates multiplication and scalar multiplica-
tion. It insures that K has a sub-field isomorphic to R, namely, all
scalar multiples of the multiplicative identity 1.

We will not prove Frobenius’ theorem; we require it only for re-
assurance that we are not omitting any important number systems
from our discussion. There is an important multiplication rule for R8,
called octonian multiplication, but it is not associative, so it makes
R8 into something weaker than a skew-field. We will not consider the
octonians.

In this book, K always denotes one of {R, C, H}, except where
stated otherwise.

4. Matrix operations

In this section, we briefly review basic notation and properties of
matrices. Let Mm,n(K) denote the set of all m by n matrices with
entries in K. For example,

M2,3(C) =
{(

z11 z12 z13

z21 z22 z23

) ∣∣∣zij ∈ C

}
.

Denote the space Mn,n(K) of square matrices as simply Mn(K). If
A ∈ Mm,n(K), then Aij denotes the element in row i and column j

of A.

Addition of same-dimension matrices is defined component-wise,
so that

(A + B)ij = Aij + Bij .

The product of A ∈ Mm,n(K) and B ∈ Mn,l(K) is the element
AB ∈ Mm,l(K) defined by the familiar formula:

(1.2) (AB)ij = (row i of A) · (column j of B) =
n∑

s=1

Ais · Bsj .
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Matrix multiplication is not generally commutative.

Denote a diagonal matrix as in this example:

diag(1, 2, 3) =


1 0 0

0 2 0
0 0 3


 .

The identity matrix is:

I = diag(1, ..., 1).

The transpose of A ∈ Mm,n(K) is the matrix AT ∈ Mn,m ob-
tained by interchanging the rows and columns of A, so that:

(AT )ij = Aji.

For example, 
1 2

3 4
5 6




T

=
(

1 3 5
2 4 6

)
.

It is straightforward to check that

(1.3) (A · B)T = BT · AT

for any matrices A and B of compatible dimensions to be multiplied.

Matrix multiplication and addition interact as follows:

Proposition 1.6. For all A, B, C ∈ Mn(K),

(1) A · (B · C) = (A · B) · C.

(2) (A + B) ·C = A ·C +B ·C and C · (A+ B) = C ·A+ C ·B.

(3) A · I = I · A = A.

The trace of a square matrix A ∈ Mn(K) is defined as the sum of
its diagonal entries:

trace(A) = A11 + · · · + Ann.

When K ∈ {R, C}, we have the familiar property for A, B ∈ Mn(K):

(1.4) trace(AB) = trace(BA).

Since multiplication in H is not commutative, this property is false
even in M1(H).
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When K ∈ {R, C}, the determinant function,

det : Mn(K) → K,

is familiar. It can be defined recursively by declaring that the deter-
minant of A ∈ M1(K) equals its single element, and the determinant
of A ∈ Mn+1(K) is defined in terms of determinants of elements of
Mn(K) by the expansion of minors formula:

(1.5) det(A) :=
n+1∑
j=1

(−1)j+1 · A1j · det(A[1, j]),

where A[i, j] ∈ Mn(K) is the matrix obtained by crossing out row i

and column j from A. For example,
a b c

d e f

g h i


 [2, 1] =

(
b c

h i

)
.

Thus, the determinant of a 3 × 3 matrix is:

det


a b c

d e f

g h i


 = a · det

(
e f

h i

)
− b · det

(
d f

g i

)

+c · det
(

d e

g h

)
= a(ei − fh) − b(di − fg) + c(dh − eg)

= aei + bfg + cdh − (afh + bdi + ceg).

It is clear that det(I) = 1. In a linear algebra course, one proves
that for all A, B ∈ Mn(K),

(1.6) det(A · B) = det(A) · det(B).

We postpone defining the determinant of a quaternionic matrix until
the next chapter. Exercise 1.5 at the end of this chapter demonstrates
why Equation 1.5 is insufficient when K = H.

Let K ∈ {R, C, H}. When a ∈ K and A ∈ Mn,m(K), we define
a · A ∈ Mn,m(K) to be the result of left-multiplying the elements of
A by a:

(a · A)ij := a · Aij .



14 1. Matrices

This operation is called left scalar multiplication. The operations of
matrix addition and left scalar multiplication make Mn,m(K) into a
left vector space over K.

Definition 1.7. A left vector space over a skew-field K is a set M

with an addition operation from M×M to M (denoted A, B �→ A+B)
and scalar multiplication operation from K×M to M (denoted a, A �→
a · A) such that M is an abelian group under addition, and for all
a, b ∈ K and all A, B ∈ M ,

(1) a · (b · A) = (a · b) · A.

(2) 1 · A = A.

(3) (a + b) · A = a · A + b · A.

(4) a · (A + B) = a · A + a · B.

This exactly matches the familiar definition of a vector space. Fa-
miliar terminology for vector spaces over fields, like subspaces, bases,
linear independence, and dimension, make sense for left vector spaces
over skew-fields. For example:

Definition 1.8. A subset W of a left vector space V over a skew-field
K is called a K-subspace (or just a subspace) if for all a, b ∈ K and
all A, B ∈ W , a · A + b · B ∈ W .

If we had instead chosen right scalar multiplication in Mn,m(K),
defined as (A·a)ij := Aij ·a, then Mn,m(K) would have become a right
vector space over K. In a right vector space, scalar multiplication is
denoted a, A �→ A · a. Properties (2) through (4) of Definition 1.7
must be re-written to reflect this notational change. Property (1) is
special because the change is more than just notational:

(1’) (A · a) · b = A · (a · b).

Do you see the difference? The net effect of multiplying A by a and
then by b is to multiply A by ba in a left vector space, or by ab in a
right vector space.

When K is a field, the difference between a left and a right vector
space over K is an irrelevant notational distinction, so one speaks
simply of “vector spaces”. But when K = H, it makes an essential
difference that we are henceforth adopting the convention of left scalar
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multiplication, and thereby choosing to regard Mn,m(H) as a left
vector space over H.

5. Matrices as linear transformations

One cornerstone of a linear algebra course is the discovery that ma-
trices correspond to linear transformations, and vice versa. We now
review that discovery. Extra care is needed when K = H.

Definition 1.9. Suppose that V1 and V2 are left vector spaces over
K. A function f : V1 → V2 is called K-linear (or simply linear) if for
all a, b ∈ K and all X, Y ∈ V1,

f(a · X + b · Y ) = a · f(X) + b · f(Y ).

It is natural to identify Kn = {(q1, ..., qn) | qi ∈ K} with M1,n(K)
(horizontal single-row matrices) and thereby regard Kn as a left vector
space over K. Using this identification, there are two potential ways
in which matrices might correspond to linear transformations from
Kn to Kn:

Definition 1.10. If A ∈ Mn(K), define RA : Kn → Kn and define
LA : Kn → Kn such that for X ∈ Kn,

RA(X) := X · A and LA(X) := (A · XT )T .

For example, if A =
(

1 2
3 4

)
∈ M2(R), then for (x, y) ∈ R2,

RA(x, y) =
(
x y

)
·
(

1 2
3 4

)
= (x + 3y, 2x + 4y), and

LA(x, y) =
((

1 2
3 4

)
·
(

x

y

))T

=
(

x + 2y

3x + 4y

)T

= (x + 2y, 3x + 4y).

We first prove that right multiplication determines a one-to-one
correspondence between linear functions from Kn to Kn and matrices.

Proposition 1.11.

(1) For any A ∈ Mn(K), RA : Kn → Kn is K-linear.

(2) Each K-linear function from Kn to Kn equals RA for some
A ∈ Mn(K).
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Proof. To prove (1), notice that for all a, b ∈ K and X, Y ∈ Kn,

RA(aX + bY ) = (aX + bY ) · A = a(X · A) + b(Y · A)

= a · RA(X) + b · RA(Y ).

To prove (2), assume that f : Kn → Kn is K-linear. Let A ∈ Mn(K)
denote the matrix whose ith row is f(ei), where

e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., en = (0, ..., 0, 1)

denotes the standard basis for Kn. It’s easy to see that f(ei) = RA(ei)
for all i = 1, .., n. Since f and RA are both linear maps and they agree
on a basis, we conclude that f = RA. �

We see from the proof that the rows of A ∈ Mn(K) are the images
under RA of {e1, ..., en}. Similarly, the columns are the images under
LA.

Most linear algebra textbooks use the convention of identifying a
matrix A ∈ Mn(K) with the function LA : Kn → Kn. Unfortunately,
this function is necessarily K-linear only when K ∈ {R, C}.

Proposition 1.12. Let K ∈ {R, C}.

(1) For any A ∈ Mn(K), LA : Kn → Kn is K-linear.

(2) Each K-linear function from Kn to Kn equals LA for some
A ∈ Mn(K).

Proposition 1.12 is an immediate corollary of Proposition 1.11
plus the following easily verified fact:

LA = RAT for all A ∈ Mn(R) or A ∈ Mn(C).

Our previous decision to consider Hn as a left vector space over
H forces us now to use the correspondence A ↔ RA between matrices
and linear transformations (rather than A ↔ LA), at least when we
wish to include K = H in our discussion.

Under either correspondence between matrices and transforma-
tions, matrix multiplication corresponds to composition of transfor-
mations, since:

LA(LB(X)) = LA·B(X) and RA(RB(X)) = RB·A(X).
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In a linear algebra course, this is one’s first indication that the ini-
tially unmotivated definition of matrix multiplication is in fact quite
natural.

6. The general linear groups

The set Mn(K) is not a group under matrix multiplication because
some matrices do not have multiplicative inverses. For example, if
A ∈ Mn(K) has all entries zero, then A has no multiplicative inverse;
that is, there is no matrix B for which AB = BA = I. However,
the elements of Mn(K) which do have inverses form a very important
group whose subgroups are the main topic of this text.

Definition 1.13. The general linear group over K is:

GLn(K) := {A ∈ Mn(K) | ∃B ∈ Mn(K) with AB = BA = I}.

Such a matrix B is the multiplicative inverse of A and is therefore
denoted A−1. As its name suggests, GLn(K) is a group under the
operation of matrix multiplication (why?). The following more visual
characterization of the general linear group is often useful:

Proposition 1.14.

GLn(K) = {A ∈ Mn(K) | RA : Kn → Kn is a linear isomorphism}.

For A ∈ Mn(K), RA is always linear; it is called an isomorphism if
it is invertible (or equivalently, surjective, or equivalently, injective).
Thus, general linear matrices correspond to motions of Kn with no
collapsing.

Proof. If A ∈ GLn(K) and B is such that BA = I, then

RA ◦ RB = RBA = RI = id (the identity),

so RA has inverse RB.

Conversely, let A ∈ Mn(K) be such that RA is invertible. The
map (RA)−1 is linear, which can be seen by applying RA to both sides
of the following equation:

(RA)−1(aX + bY ) ?= a(RA)−1(X) + b(RA)−1(Y ).
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Since every linear map is represented by a matrix, (RA)−1 = RB for
some B ∈ Mn(K). Therefore, RBA = RA ◦ RB = id, which implies
BA = I. Similarly, RAB = RB ◦RA = id, which implies AB = I. �

The following well-known fact from linear algebra provides yet
another useful description of the general linear group, at least when
K 	= H:

Proposition 1.15. If K ∈ {R, C}, then

GLn(K) = {A ∈ Mn(K) | det(A) 	= 0}.

In fact, the elements of the inverse of a matrix can be described
explicitly in terms of the determinant of the matrix and its minors:

Proposition 1.16 (Cramer’s rule). Let K ∈ {R, C}. Using the no-
tation of Equation 1.5,

(A−1)ij = (−1)i+j det(A[j, i])
det(A)

.

7. Change of basis via conjugation

In this section, we review a basic fact from linear algebra: a conjugate
of a matrix represents the same linear transformation as the matrix,
but in a different basis.

Let g denote an n-dimensional (left) vector space over K. Then
g is isomorphic to Kn. In fact, there are many isomorphisms from g

to Kn. For any ordered basis V = {v1, ..., vn} of g, the following is an
isomorphism:

(1.7) (c1v1 + · · · + cnvn) �→ (c1, ..., cn).

Every isomorphism from g to Kn has this form for some ordered basis
of g, so choosing an isomorphism amounts to choosing an ordered
basis. In practice, there is typically no choice of basis which seems
more natural than the other choices. To convince yourself of this,
consider the case where g is an arbitrary subspace of Km for some
m > n.

Now suppose that f : g → g is a linear transformation. In order
to identify f with a matrix, we must first choose an ordered basis V
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of g. We use this basis to identify g ∼= Kn and thereby to regard f as
a linear transformation from Kn to Kn, which can be represented as
RA for some A ∈ Mn(K). A crucial point is that A depends on the
choice of ordered basis. To emphasize this dependence, we say that
“A represents f in the basis V (via right-multiplication).” We would
like to determine which matrix represents f in a different basis.

To avoid cumbersome notation, we will simplify this problem
without really losing generality. Suppose that f : Kn → Kn is a
linear transformation. We know that f = RA for some A ∈ Mn(K).
Translating this sentence into our new terminology, we say that “A

represents f in the standard basis of Kn,” which is:

{e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., en = (0, ..., 0, 1)}.

Now let V = {v1, ..., vn} denote an arbitrary basis of Kn. We
seek the matrix which represents f in the basis V . First, we let
g ∈ GLn(K) denote the matrix whose rows are v1, v2, ..., vn. We call
g the change of basis matrix. To understand why, notice that eig = vi

for each i = 1, ..., n. So,

(c1, ..., cn) · g = (c1e1 + · · · + cnen) · g = c1v1 + · · · + cnvn.

By Equation 1.7, the vector c1v1 + · · · + cnvn ∈ Kn is represented in
the basis V as the vector (c1, ..., cn). Thus, Rg : Kn → Kn translates
between V and the standard basis. For X ∈ Kn, Rg(X) represents in
the standard basis the same vector that X represents in V . Further,
Rg−1(X) represents in V the same vector that X represents in the
standard basis.

Proposition 1.17. gAg−1 represents f in the basis V .

Proof. Let X = (c1, ..., cn), which represents c1v1 + · · ·+ cnvn in V .
We must show that RgAg−1 (X) represents (c1v1 + · · · + cnvn) · A in
V . This follows from:

RgAg−1(X) = (c1, ..., cn)gAg−1 = (c1v1 + · · · + cnvn)Ag−1

= Rg−1((c1v1 + · · · + cnvn) · A).

�
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Proposition 1.17 can be summarized in the following way: for any
A ∈ Mn(K) and any g ∈ GLn(K), the matrix gAg−1 represents RA

in the basis {e1g, ..., eng}.
The basic idea of the proof was simple enough: the transformation

RgAg−1 = Rg−1 ◦RA ◦Rg first translates into the standard basis, then
performs the transformation associated to A, then translates back.

This key result requires only slight modification when represent-
ing linear transformations using left matrix multiplication when K is
R or C: for any A ∈ Mn(K) and any g ∈ GLn(K), the matrix g−1Ag

represents LA in the basis {ge1, ..., gen} (via left multiplication). The
proof idea is the same: Lg−1Ag = Lg−1 ◦ LA ◦ Lg first translates into
the standard basis, then performs the transformation associated to
A, then translates back.

8. Exercises

Ex. 1.1. Describe a natural 1-to-1 correspondence between elements
of SO(3) and elements of

T 1S2 = {(p, v) ∈ R3 × R3 | |p| = |v| = 1 and p ⊥ v},

which can be thought of as the collection of all unit-length vectors v

tangent to all points p of S2. Compare to Question 1.2.

Ex. 1.2. Prove Equation 1.3.

Ex. 1.3. Prove Equation 1.4.

Ex. 1.4. Let A, B ∈ Mn(K). Prove that if AB = I, then BA = I.

Ex. 1.5. Suppose that the determinant of A ∈ Mn(H) were defined

as in Equation 1.5. Show for A =
(
i j
i j

)
∈ M2(H) that det(A) 	= 0

but RA : H2 → H2 is not invertible.

Ex. 1.6. Find B ∈ M2(R) such that RB : R2 → R2 is a counter-
clockwise rotation through an angle θ.

Ex. 1.7. Describe all elements A ∈ GLn(R) with the property that
AB = BA for all B ∈ GLn(R).
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Ex. 1.8. Let SL2(Z) denote the set of all 2 by 2 matrices with integer
entries and with determinant 1. Prove that SL2(Z) is a subgroup of
GL2(R). Is SLn(Z) (defined analogously) a subgroup of GLn(R)?

Ex. 1.9. Describe the product of two matrices in M6(K) which both
have the form: 



a b 0 0 0 0
c d 0 0 0 0
0 0 e f g 0
0 0 h i j 0
0 0 k l m 0
0 0 0 0 0 n




Describe a general rule for the product of two matrices with the same
block form.

Ex. 1.10. If G1 ⊂ GLn1(K) and G2 ⊂ GLn2(K) are subgroups,
describe a subgroup of GLn1+n2(K) which is isomorphic to G1 × G2.

Ex. 1.11. Show by example that for A ∈ Mn(H), LA : Hn → Hn is
not necessarily H-linear.

Ex. 1.12. Define the real and imaginary parts of a quaternion as
follows:

Re(a + bi + cj + dk) = a

Im(a + bi + cj + dk) = bi + cj + dk.

Let q1 = x1i+ y1j+ z1k and q2 = x2i+ y2j+ z2k be purely imaginary
quaternions in H. Prove that −Re(q1 · q2) is their vector dot product
in R3 = span{i, j,k} and Im(q1 · q2) is their vector cross product.

Ex. 1.13. Prove that non-real elements q1, q2 ∈ H commute if and
only if their imaginary parts are parallel; that is, Im(q1) = λ · Im(q2)
for some λ ∈ R.

Ex. 1.14. Characterize the pairs q1, q2 ∈ H which anti-commute,
meaning that q1q2 = −q2q1.

Ex. 1.15. If q ∈ H satisfies qi = iq, prove that q ∈ C.

Ex. 1.16. Prove that complex multiplication in C ∼= R2 does not
extend to a multiplication operation on R3 which makes R3 into a
real division algebra.
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Ex. 1.17. Describe a subgroup of GLn+1(R) which is isomorphic to
the group Rn under the operation of vector-addition.

Ex. 1.18. If λ ∈ H commutes with every element of H, prove that
λ ∈ R.



Chapter 3

The orthogonal groups

In this chapter, we define and study what are probably the most im-
portant subgroups of the general linear groups. These are denoted
O(n), SO(n), U(n), SU(n) and Sp(n). In particular, the group
SO(3), which was previously described as the “positions of a globe,”
now receives a more rigorous definition. We will continue to study
these groups throughout the remainder of the book.

1. The standard inner product on Kn

The conjugate and norm of an element q ∈ K are defined as:

(1) If q ∈ R, then q := q and |q| means the absolute value of q.

(2) If q = a + bi ∈ C, then q := a − bi and |q| :=
√

a2 + b2.

(3) If q = a + bi + cj + dk ∈ H, then q := a − bi − cj − dk and
|q| :=

√
a2 + b2 + c2 + d2.

In all cases, it is a quick calculation to verify that for q, q1, q2 ∈ K:

q1 · q2 = q2 · q1.(3.1)

q · q = q · q = |q|2.(3.2)

These two equalities together imply that:

(3.3) |q1 · q2| = |q1| · |q2|.

33
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Definition 3.1. The standard inner product on Kn is the function
from Kn × Kn to K defined by:

〈(x1, x2, ..., xn), (y1, y2, ..., yn)〉K := x1 · y1 + x2 · y2 + · · · + xn · yn.

It follows from Equation 3.2 that for all X ∈ Kn, 〈X, X〉K is a
real number that is ≥ 0 and equal to zero only when X = (0, ..., 0).
This allows us to define:

Definition 3.2. The standard norm on Kn is the function from Kn

to the nonnegative real numbers defined by:

|X |K =
√
〈X, X〉K.

We will omit the K-subscripts whenever there is no ambiguity.

Proposition 3.3. For all X, Y, Z ∈ Kn and λ ∈ K,

(1) 〈X, Y + Z〉 = 〈X, Y 〉 + 〈X, Z〉,
(2) 〈X + Y, Z〉 = 〈X, Z〉 + 〈Y, Z〉,
(3) 〈λX, Y 〉 = λ〈X, Y 〉 and 〈X, λY 〉 = 〈X, Y 〉λ,

(4) 〈X, Y 〉 = 〈Y, X〉.

Definition 3.4.

• Vectors X, Y ∈ Kn are called orthogonal if 〈X, Y 〉 = 0.

• A basis {X1, ..., Xn} of Kn is called orthonormal if 〈Xi, Xj〉
equals 1 when i = j and equals zero when i 	= j (that is, the
vectors have norm 1 and are mutually orthogonal).

• The standard orthonormal basis of Kn is:

e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., en = (0, ..., 0, 1).

When K = R, the standard inner product is the familiar “dot
product”, described geometrically in terms of the angle θ between
X, Y ∈ Rn:

(3.4) 〈X, Y 〉R = |X |R|Y |R cos θ.

When K = C, the standard inner product is also called the
hermitian inner product. Since the hermitian inner product of two
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vectors X, Y ∈ Cn is a complex number, we should separately in-
terpret the geometric meanings of its real and imaginary parts. The
cleanest such interpretation is in terms of the identification

f = fn : Cn → R2n

from the previous chapter. It is easy to verify that for all X, Y ∈ Cn,

〈X, Y 〉C = 〈f(X), f(Y )〉R + i〈f(X), f(iY )〉R,(3.5)

|X |C = |f(X)|R.(3.6)

If X, Y ∈ Cn are orthogonal, then two things are true:

〈f(X), f(Y )〉R = 0 and 〈f(X), f(iY )〉R = 0.

This observation leads to:

Proposition 3.5. {X1, ..., Xn} ∈ Cn is an orthonormal basis if and
only if {f(X1), f(iX1), ..., f(Xn), f(iXn)} is an orthonormal basis of
R2n.

When K = H, the standard inner product is also called the
symplectic inner product. For X, Y ∈ Hn, the 1, i, j and k com-
ponents of 〈X, Y 〉H are best interpreted geometrically in terms of the
identification h = f2n ◦ gn : Hn → R4n.

〈X, Y 〉H = 〈h(X), h(Y )〉R + i〈h(X), h(iY )〉R
+j〈h(X), h(jY )〉R + k〈h(X), h(kY )〉R.

|X |H = |h(X)|R.

Proposition 3.6. {X1, ..., Xn} ∈ Hn is an orthonormal basis if and
only if the following is an orthonormal basis of R4n:

{h(X1), h(iX1), h(jX1), h(kX1), ..., h(Xn), h(iXn), h(jXn), h(kXn)}.

The following inequality follows from Equation 3.4 when K = R:

Proposition 3.7 (Schwarz inequality). For all X, Y ∈ Kn,

|〈X, Y 〉| ≤ |X | · |Y |.
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Proof. Let X, Y ∈ Kn. Let α := 〈X, Y 〉. Assume that X 	= 0
(otherwise the proposition is trivial). For all λ ∈ K, we have:

0 ≤ |λX + Y |2 = 〈λX + Y, λX + Y 〉
= λ〈X, X〉λ + λ〈X, Y 〉 + 〈Y, X〉λ + 〈Y, Y 〉
= |λ|2|X |2 + λ〈X, Y 〉 + λ〈X, Y 〉 + |Y |2

= |λ|2|X |2 + 2Re(λα) + |Y |2.

Choosing λ = −α/|X |2 gives:

0 ≤ |α|2/|X |2 − 2|α|2/|X |2 + |Y |2,

which proves that |α| ≤ |X | · |Y | as desired. �

2. Several characterizations of the orthogonal
groups

Definition 3.8. The orthogonal group over K,

On(K) := {A ∈ GLn(K) | 〈XA, Y A〉 = 〈X, Y 〉 for all X, Y ∈ Kn},

... is denoted O(n) and called the orthogonal group for K = R.

... is denoted U(n) and called the unitary group for K = C.

... is denoted Sp(n) and called the symplectic group for K = H.

It is straightforward to see that On(K) is a subgroup of GLn(K).
Its elements are called orthogonal, unitary or symplectic matrices. To
describe their form, it is useful to denote the conjugate-transpose of
A ∈ Mn(K) as A∗ := (A)T , where A means the matrix obtained by
conjugating all of the entries of A.

Proposition 3.9. For A ∈ GLn(K) the following are equivalent.

(1) A ∈ On(K).

(2) RA preserves orthonormal bases; i.e., if {X1, ..., Xn} is an
orthonormal basis of Kn, then so is {RA(X1), ..., RA(Xn)}.

(3) The rows of A form an orthonormal basis of Kn.

(4) A · A∗ = I.
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Proof. (1) =⇒ (2) is obvious. (2) =⇒ (3) because the rows of A

equal {RA(e1), ..., RA(en)}. To see that (3) ⇐⇒ (4), notice that:

(A · A∗)ij = (row i of A) · (column j of A∗)

= (row i of A) · (row j of A)T

= 〈(row i of A), (row j of A)〉.
Finally, we prove that (3) =⇒ (1). If the rows of A are orthonormal,
then for all X = (x1, ..., x2), Y = (y1, ..., yn) ∈ Kn,

〈RA(X), RA(Y )〉

=

〈
n∑

l=1

xl(row l of A),
n∑

s=1

ys(row s of A)

〉

=
n∑

l,s=1

xl〈(row l of A), (row s of A)〉ys

= x1y1 + · · · + xnyn = 〈X, Y 〉.
�

Geometrically, O(n) is the group of matrices A for which the lin-
ear transformation RA : Rn → Rn preserves dot products of vectors,
and hence also norms of vectors. Such transformations should be vi-
sualized as “rigid motions” of Rn (we will be more precise about this
in Section 5). The geometric meanings of U(n) and Sp(n) are best
described in terms O(n) by considering the homomorphisms from the
previous chapter.

Proposition 3.10.

(1) ρn(U(n)) = O(2n) ∩ ρn(GLn(C)).

(2) Ψn(Sp(n)) = U(2n) ∩ Ψn(GLn(H)).

(3) (ρ2n ◦ Ψn)(Sp(n)) = O(4n) ∩ (ρ2n ◦ Ψn)(GLn(H)).

Since U(n) is isomorphic to its image, ρn(U(n)), part (1) says
that U(n) is isomorphic to the group of complex-linear real orthog-
onal matrices. In other words, U(n) is isomorphic to the group of
rigid motions of R2n which preserve the standard complex struc-
ture. Similarly, part (3) says that Sp(n) is isomorphic to the group
of quaternionic-linear real orthogonal matrices.



38 3. The orthogonal groups

Proof. We prove only (1), since (2) is similar and (3) follows from
(1) and (2). The most straightforward idea is to use Equation 3.5. A
quicker approach is to first notice that for all A ∈ Mn(C),

ρn(A∗) = ρn(A)∗.

If A ∈ GLn(C), then ρn(A) · ρn(A)∗ = ρn(A) · ρn(A∗) = ρn(A · A∗),
which shows that A ∈ U(n) if and only if ρn(A) ∈ O(2n). �

We said that On(K) is the group of matrices A for which RA

preserves inner products of vectors, and hence also norms of vectors.
The next result says that if RA preserves norms, then it automatically
preserves inner products.

Proposition 3.11.

On(K) = {A ∈ GLn(K) | |RA(X)| = |X | for all X ∈ Kn}.

Proof. To prove the case K = R, we show that the inner product is
completely determined by the norm. Solving the equation

|X + Y |2R = 〈X + Y, X + Y 〉R = 〈X, X〉R + 〈Y, Y 〉R + 2〈X, Y 〉R

for 〈X, Y 〉R gives:

〈X, Y 〉R = 1/2(|X + Y |2R − |X |2R − |Y |2R).

So if RA preserves norms, then it also preserves inner products.

The above argument doesn’t work for K ∈ {C, H} (why not?).
Instead, we prove the case K = C as a consequence of the real case.
Suppose A ∈ GLn(C) is such that RA : Cn → Cn is norm-preserving.
Then Rρn(A) : R2n → R2n also preserves norms, since for all X ∈ Cn,

|Rρn(A)(fn(X))|R = |fn(RA(X))|R = |RA(X)|C = |X |C = |fn(X)|R.

Therefore ρn(A) ∈ O(n), which using Proposition 3.10 implies that
A ∈ U(n).

The K = H case is proven from the real case in a similar fashion.
�
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3. The special orthogonal groups

In this section, we define important subgroups of the orthogonal
groups, beginning with the observation that:

Proposition 3.12. If A ∈ On(K), then | det(A)| = 1.

Proof. Since A · A∗ = I,

1 = det(A · A∗) = det(A) · det(A∗) = det(A) · det(A) = | det(A)|2.

We used the fact that det(A∗) = det(A), which should be verified
first for K ∈ {R, C}. The quaternionic case follows from the complex
case because for quaternionic matrices, det(A) means det(Ψn(A)),
and Ψn(A∗) = Ψn(A)∗. �

The interpretation of Proposition 3.12 depends on K:

• If A ∈ O(n), then det(A) = ±1.

• If A ∈ U(n), then det(A) = eiθ for some θ ∈ [0, 2π).

• If A ∈ Sp(n), then Proposition 2.10 implies det(A) = ±1.
We will see later that det(A) = 1.

The subgroup

SO(n) := {A ∈ O(n) | det(A) = 1}

is called the special orthogonal group. The subgroup

SU(n) := {A ∈ U(n) | det(A) = 1}

is called the special unitary group. Both are clearly subgroups of the
general linear group and in fact of the special linear group:

SLn(K) := {A ∈ GLn(K) | det(A) = 1}.

Notice that SO(n) comprises the orthogonal matrices whose de-
terminants are one of two possibilities, while SU(n) comprises the
unitary matrices whose determinants are one of a circle’s worth of
possibilities. We will see later that the relationship of SO(n) to O(n)
is very different from SU(n) to U(n).
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4. Low dimensional orthogonal groups

In this section, we explicitly describe On(K) for small values of n.
First, O(1) = {(1), (−1)} and SO(1) = {(1)} are isomorphic to the
unique groups with 2 and 1 elements respectively.

Next, if A ∈ O(2), then its two rows form an orthonormal basis
of R2. Its first row is an arbitrary unit-length vector of R2, which can
be written as (cos θ, sin θ) for some θ. The second row is unit-length
and orthogonal to the first, which leaves two choices: (− sin θ, cos θ)
or (sin θ,− cos θ). For the first choice, det(A) = 1, and for the second,
det(A) = −1. So we learn:

SO(2) =
{(

cos θ sin θ

− sin θ cos θ

) ∣∣∣θ ∈ [0, 2π)
}

,(3.7)

O(2) = SO(2) ∪
{(

cos θ sin θ

sin θ − cos θ

) ∣∣∣θ ∈ [0, 2π)
}

.

SO(2) is identified with the set of points on a circle; its group op-
eration is addition of angles. O(2) is a disjoint union of two circles.
It is interesting that the disjoint union of two circles has a group
operation.

Next, SU(1) = {(1)} and U(1) = {(eiθ) | θ ∈ [0, 2π)}, which is
isomorphic to the circle-group SO(2).

Next, Sp(1) = {(a + bi + cj + dk) | a2 + b2 + c2 + d2 = 1}
is the group of unit-length quaternions, which is naturally identified
with the three-dimensional sphere S3 ⊂ R4 ∼= H. In fact, it follows
from Equation 3.3 that the product of two unit-length quaternions
is a unit-length quaternion. So we might have mentioned several
pages ago the beautiful fact that quaternionic multiplication provides
a group operation on the three-dimensional sphere! It turns out that
S0, S1 and S3 are the only spheres which are also groups.

We conclude this section by showing that SU(2) is isomorphic to
Sp(1), and thus in some sense also has the shape of a 3-dimensional
sphere.

Proposition 3.13. SU(2) is isomorphic to Sp(1).
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Proof. First notice that

Ψ1(Sp(1)) =
{(

z w

−w z

)
| z, w ∈ C such that |z|2 + |w|2 = 1

}

is a subgroup of U(2) by Proposition 3.10, namely, the quaternionic-
linear 2-by-2 unitary matrices. Calculating the determinant of such
matrices shows that Ψ1(Sp(1)) ⊂ SU(2). We wish to prove that
Ψ1(Sp(1)) = SU(2), so that Ψ1 determines an isomorphism between
Sp(1) and SU(2).

Let A =
(

z1 w1

w2 z2

)
∈ SU(2). An easily verified formula for the

inverse of a 2-by-2 matrix is: A−1 = 1
det(A)

(
z2 −w1

−w2 z1

)
. In our

case, det(A) = 1 and
(

z2 −w1

−w2 z1

)
= A−1 = A∗ =

(
z1 w2

w1 z2

)
,

which tells us that z2 = z1 and w2 = −w1. It now follows that
SU(2) = Ψ1(Sp(1)). �

5. Orthogonal matrices and isometries

In this section, we describe O(n) geometrically as the group of isome-
tries of Rn which fix the origin and discuss the difference between
SO(3) and O(3).

The distance between points X = (x1, ..., xn) and Y = (y1, ..., yn)
in Rn is measured as:

dist(X, Y ) := |X − Y | =
√

(x1 − y1)2 + · · · + (xn − yn)2.

A function f : Rn → Rn is called an isometry if for all X, Y ∈ Rn,
dist(f(X), f(Y )) = dist(X, Y ) .

Proposition 3.14.

(1) If A ∈ O(n) then RA : Rn → Rn is an isometry.

(2) If f : Rn → Rn is an isometry with f(0) = 0, then f = RA

for some A ∈ O(n). In particular, f is linear.
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Proof. For A ∈ O(n) and X, Y ∈ Rn,

dist(RA(X), RA(Y )) = |RA(X) − RA(Y )| = |RA(X − Y )|
= |X − Y | = dist(X, Y ),

which proves that RA is an isometry.

Conversely, suppose that f : Rn → Rn is an isometry for which
f(0) = 0. For any X ∈ Rn,

|f(X)| = dist(f(X), 0) = dist(f(X), f(0)) = dist(X, 0) = |X |,

which shows that f preserves norms. We showed in the proof of
Proposition 3.11 that inner products are determined by norms, so f

also preserves inner products; that is, for all X, Y ∈ Rn,

〈f(X), f(Y )〉 = 〈X, Y 〉.

Let A be the matrix whose ith row is f(ei), so f(ei) = RA(ei) for
all i = 1, ..., n. Notice that A ∈ O(n), since its rows are orthonormal.
We will prove that f = RA (and thus that f is linear) by showing that
g := (RA)−1 ◦ f is the identity function. Notice that g is an isometry
with g(0) = 0 (so g preserves norms and inner products, as above)
and g(ei) = ei for all i = 1, ..., n. Let X ∈ Rn. Write X =

∑
aiei

and g(X) =
∑

biei. Then,

bi = 〈g(X), ei〉 = 〈g(X), g(ei)〉 = 〈X, ei〉 = ai,

which proves g(X) = X , so g is the identity function. �

O(n) is the group of isometries of Rn which fix the origin and
which therefore map the sphere Sn−1 ⊂ Rn to itself. For example,
elements of O(3) represent functions from the “globe” S2 ⊂ R3 to
itself. We will see next that elements of SO(3) represent real physical
motions of the globe, which justifies our characterization of SO(3) as
the group of positions of a globe (Chapter 1, Section 1).

To understand the difference between O(3) and SO(3), we must
discuss the orientation of R3. An ordered orthonormal basis of R3,
like {X1, X2, X3}, is called right-handed if X1×X2 = X3, where “×”
denotes the vector cross product in R3. Visually, this means that if
the fingers of your right hand are curled from X1 towards X2, then
your thumb will point in the direction of X3.
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Proposition 3.15. Let A ∈ O(3). Then A ∈ SO(3) if and only if the
rows of A, {RA(e1), RA(e2), RA(e3)}, form a right-handed orthonor-
mal basis.

Proof. Let RA(e1) = (a, b, c) and RA(e2) = (d, e, f) denote the first
two rows of A. The third row is unit-length and orthogonal to both,
which leaves two choices:

RA(e3) = ±(RA(e1) × RA(e2)) = ±(bf − ce, cd − af, ae − bd).

A quick calculation shows that the “+” choice gives det(A) > 0, while
the “-” choice gives det(A) < 0. �

Elements of SO(3) correspond to “physically performable mo-
tions” of a globe. This statement is imprecise, but in Chapter 9
we give it teeth by proving that every element of SO(3) is a rota-
tion through some angle about some single axis. An element of O(3)
with negative determinant turns the globe inside-out. For example,
Rdiag(−1,−1,−1) maps each point of the globe to its antipode (its neg-
ative). This is not a physically performable motion.

6. The isometry group of Euclidean space

It is a straightforward exercise to show that

Isom(Rn) := {f : Rn → Rn | f is an isometry}

is a group under composition of functions. The subgroup of isometries
which fix the origin is isomorphic to O(n). An isometry, f , that does
not fix the origin is not linear, so cannot equal to RA for any matrix
A. In this case, let V = f(0), so the function X �→ f(X) − V is
an isometry which fixes the origin and therefore equals RA for some
A ∈ O(n). Therefore, an arbitrary isometry of Rn has the form

f(X) = RA(X) + V

for some A ∈ O(n) and V ∈ Rn.

There is a clever trick for representing any isometry of Rn as a
matrix, even ones which do not fix the origin. Graphics programmers
use this trick to rotate and translate objects on the computer screen
via matrices. We first describe the n = 3 case.
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Let A ∈ O(3) and V = (v1, v2, v3) ∈ R3. We will represent the
isometry f(X) = RA(X) + V by the matrix:

F :=
(

A 0
V 1

)
:=




A11 A12 A13 0
A21 A22 A23 0
A31 A32 A33 0
v1 v2 v3 1


 ∈ GL4(R).

Let X = (x1, x2, x3) ∈ R3. Denote (X, 1) = (x1, x2, x3, 1) ∈ R4.
Notice that

(X, 1) · F = (RA(X) + V, 1) ∈ R4.

In this way, F represents f .

The composition of two isometries, like the ones represented by

F1 =
(

A1 0
V1 1

)
and F2 =

(
A2 0
V2 1

)
, is the isometry represented by

the product:(
A1 0
V1 1

)
·
(

A2 0
V2 1

)
=
(

A1 · A2 0
RA2(V1) + V2 1

)
.

Matrix multiplication is quite useful here. It allowed us to see imme-
diately that the isometry X �→ RA1(X)+V1 followed by the isometry
X �→ RA2(X)+V2 is the isometry X �→ R(A1·A2)(X)+RA2(V1)+V2.

The above ideas also work for values of n other than 3. We
conclude that Isom(Rn) is isomorphic to the following subgroup of
GLn+1(R):

Isom(Rn) ∼=
{(

A 0
V 1

) ∣∣∣A ∈ O(n) and V ∈ Rn

}
.

Notice that the following subgroup of Isom(Rn) is isomorphic
to (Rn, +), which denotes Rn under the group-operation of vector-
addition:

Trans(Rn) =
{(

I 0
V 1

) ∣∣∣V ∈ Rn

}
.

This is the group of isometries of Rn which only translate and do not
rotate. It is interesting that (Rn, +) is isomorphic to a matrix group!
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7. Symmetry groups

The symmetry group of a subset X ⊂ Rn is the group of all isometries
of Rn which carry X onto itself:

Definition 3.16. Symm(X) := {f ∈ Isom(Rn) | f(X) = X}.

The statement “f(X) = X” means that each point of X is sent
by f to a (possibly different) point of X .

For example, the symmetry group of the sphere Sn ⊂ Rn+1 equals
the group of isometries of Rn+1 with no translational component,
which is isomorphic to the orthogonal group:

Symm(Sn) =
{(

A 0
V 1

) ∣∣∣A ∈ O(n + 1), V = (0, ..., 0)
}

∼= O(n + 1).

In an abstract algebra course, you probably met some important
finite symmetry groups. For example, the symmetry group of a regu-
lar m-gon (triangle, square, pentagon, hexagon, etc.) centered at the
origin in R2 is called the dihedral group of order 2m, denoted Dm.
The elements of Dm with determinant +1 are called rotations; they
form a subgroup of index 2 which is isomorphic to the cyclic group
Zm, of order m. The elements of Dm with determinant −1 are called
flips.

The fact that half of the elements of Dm are rotations illustrates
a general principal:

Definition 3.17. Symm(X) = Symm+(X) ∪ Symm−(X), where the
sets

Symm±(X) :=
{(

A 0
V 1

) ∣∣∣det(A) = ±1
}

are respectively called the “direct” and “indirect” symmetries of X.

Proposition 3.18. For any X ⊂ Rn, Symm+(X) ⊂ Symm(X) is a
subgroup with index 1 or 2.

The proof is left to the reader in Exercise 3.4. An example of
a set Y ⊂ R2 whose direct symmetries have index 1 (meaning all
symmetries are direct) is illustrated in Figure 1.

Symmetry groups of subsets of R2 are useful for studying ob-
jects which are essentially 2-dimensional, like snowflakes and certain
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X Y

Figure 1. Symm(X) = D6, while Symm(Y ) = �6.

crystal structures. Many subsets of R2, like the wallpaper tilings of
R2 illustrated in some M.C. Escher prints, have infinite symmetry
groups. Chapter 28 of [5] describes the classification of such infinite
“wallpaper groups”. Perhaps surprisingly, the only finite symmetry
groups in dimension 2 are Dm and Zm. The following theorem is
attributed to Leonardo da Vinci (1452-1519):

Proposition 3.19. For X ⊂ R2, if Symm(X) is finite, then it is
isomorphic to Dm or Zm for some m.

The proof involves two steps. First, when Symm(X) is finite, its
elements must share a common fixed point, so it is isomorphic to a
subgroup of O(2). Second, Dm and Zm are the only finite subgroups
of O(2).

Symmetry groups of subsets of R3 are even more interesting. In
chemistry, the physical properties of a substance are intimately re-
lated to the symmetry groups of its molecules. In dimension 3, there
are still very few possible finite symmetry groups:

Theorem 3.20. For X ⊂ R3, if Symm+(X) is finite, then it is
isomorphic to Dm, Zm, A4, S4 or A5.

Here, Sm denotes the group of permutations of a set with m

elements, and Am ⊂ Sm denotes the subgroup of even permutations
(called the alternating group). Like the n = 2 case, the proof involves
verifying that all symmetries have a common fixed point and that the
only finite subgroups of SO(3) are Dm, Zm, A4, S4 and A4.

The regular solids provide examples of sets whose direct sym-
metry groups equal A4, S4 and A5. A regular solid (also called a
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“platonic solid” or a “regular polyhedra”) is a polyhedra whose faces
are mutually congruent regular polygons, at each of whose vertices
the same number of edges meet. A famous classification theorem,
attributed to Plato around 400 B.C., says that there are only five
regular solids, pictured in Figure 2. The regular solids were once con-

tetrahedron cube octahedron

dodecahedron icosahedron

Figure 2. The five regular solids.

sidered to be sacred shapes, thought to represent fire, earth, air, the
universe, and water. The fact that any other shape is “as symmetric”
as one of these five (or is infinitely symmetric) enhances one’s sense
that the regular solids are of universal importance.

It turns out that A4 is the direct symmetry group of a tetrahe-
dron, S4 is the direct symmetry group of a cube or an octahedron,
and A5 is the direct symmetry group of a dodecahedron or an icosa-
hedron. See [6] for a complete calculation of these direct symmetry
groups and a proof of Theorem 3.20. Since a cube has 6 faces, 12
edges, and 8 vertices, it may be surprising that its direct symmetry
group is S4. What does a cube have 4 of which get permuted by its di-
rect symmetries? It has 4 diagonals (lines connecting antipodal pairs
of vertices). This observation is the starting point of the calculation
of its direct symmetry group.

8. Exercises

Ex. 3.1. Prove part (4) of Proposition 3.3.
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Ex. 3.2. Prove equations 3.5 and 3.6.

Ex. 3.3. Prove Proposition 3.5.

Ex. 3.4. Prove Proposition 3.18.

Ex. 3.5. Let A ∈ GLn(K). Prove that A ∈ On(K) if and only if the
columns of A are an orthonormal basis of Kn.

Ex. 3.6.

(1) Show that for every A ∈ O(2) − SO(2), RA : R2 → R2 is
a flip about some line through the origin. How is this line
determined by the angle of A (as in Equation 3.7)?

(2) Let B =
(

cos θ sin θ

− sin θ cos θ

)
∈ SO(2). Assume that θ is not

an integer multiple of π. Prove that B does not commute
with any A ∈ O(2)−SO(2). Hint: Show that RAB and RBA

act differently on the line in R2 about which A is a flip.

Ex. 3.7. Describe the product of two arbitrary elements of O(2) in
terms of their angles (as in Equation 3.7).

Ex. 3.8. Let A ∈ O(n) have determinant −1. Prove that:

O(n) = SO(n) ∪ {A · B | B ∈ SO(n)}.

Ex. 3.9. Define a map f : O(n) → SO(n) × {+1,−1} as follows:

f(A) = (det(A) · A, detA).

(1) If n is odd, prove that f is an isomorphism.

(2) Assume that n is odd and that X ⊂ Rn is symmetric about
the origin, which means that −p ∈ X if and only if p ∈ X .
Also assume that Symm(X) ⊂ O(n); in other words, X has
no translational symmetries. Prove that Symm(X) is iso-
morphic to Symm+(X) × {+1,−1}.
Comment: Four of the five regular solids are symmetric
about the origin. The tetrahedron is not; its direct symmetry
group is A4 and its full symmetry group is S4

(3) Prove that O(2) is not isomorphic to SO(2) × {+1,−1}.
Hint: How many elements of order two are there?
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Ex. 3.10. Prove that Trans(Rn) is a normal subgroup of Isom(Rn).

Ex. 3.11. Prove that the Affine group,

Affn(K) =
{(

A 0
V 1

) ∣∣∣A ∈ GLn(K) and V ∈ Kn

}
is a subgroup of GLn+1(K). Any F ∈ Affn(K) can be identified with
the function f(X) = RA(X) + V from Kn to Kn as in Section 6.
Prove that f sends lines in Kn to lines in Kn. A line in Kn means a
set of the form {v0 + v|v ∈ W}, where v0 ∈ Kn, and W ⊂ Kn is a
1-dimensional K-subspace.

Ex. 3.12. Is Aff1(R) abelian? Explain algebraically and visually.

Ex. 3.13. Let A =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


.

(1) Calculate RA(x, y, z, w).

(2) Describe a subgroup, H , of O(4) which is isomorphic to S4

(S4 = the group of permutations of a 4 elements set).

(3) Describe a subgroup, H , of O(n) which is isomorphic to Sn.
What is H ∩ SO(n)?

(4) Prove that every finite group is isomorphic to a subgroup
of O(n) for some integer n. Hint: Use Cayley’s Theorem,
found in any abstract algebra textbook.

Ex. 3.14. Let g be a K-subspace of Kn with dimension d. Let
B = {X1, ..., Xd} be an orthonormal basis of g. Let f : g → g be
K-linear. Let A ∈ Mn(K) represent f in the basis B. Prove that the
following are equivalent:

(1) A ∈ On(K).

(2) 〈f(X), f(Y )〉 = 〈X, Y 〉 for all X, Y ∈ g.

Show by example that this is false when B is not orthonormal.
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