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Summary. We give an overview of the search for a motivic spectral sequence:
a spectral sequence connecting algebraic K-theory to motivic cohomology that is
analogous to the Atiyah-Hirzebruch spectral sequence that connects topological K-
theory to singular cohomology.

Introduction

In this chapter we explain the Atiyah-Hirzebruch spectral sequence that re-
lates topological K-theory to singular cohomology and try to motivate the
search for a motivic version. In the time since [18] appeared, which concerns
motivation for such a motivic spectral sequence, many authors have produced
results in this direction. We describe the Bloch-Lichtenbaum spectral sequence
[8] for the spectrum of a field together with the Friedlander-Suslin and Levine
extensions [12, 28] to the global case for a smooth variety over a field. We
explain the Goodwillie-Lichtenbaum idea involving tuples of commuting au-
tomorphisms and the theorem [19] that uses it to produce a motivic spectral
sequence for an affine regular noetherian scheme, unfortunately involving cer-
tain non-standard motivic cohomology groups. We present Suslin’s result [41],
that, for smooth varieties over a field, these non-standard motivic cohomol-
ogy groups are isomorphic to the standard groups. We sketch Voevodsky’s
approach via the slice filtration [43, 47, 49], much of which remains conjec-
tural. Finally, we sketch Levine’s recent preprint [29], which gives a novel
approach that yields a spectral sequence for smooth varieties over a field and
makes it extremely clear which formal properties of K-theory are used in the
proof. At this point we refer the reader also to [11] where a similar spectral
sequence is developed for semi-topological K-theory.

The importance of the motivic spectral sequence lies in its applications.
Important work of Voevodsky [42, 44, 48] makes motivic cohomology amenable
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to computation, and the motivic spectral sequence is the route by which those
computations can be used to compute algebraic K-groups. For such applica-
tions, see, for example, [51, 40, 39, 34, 35, 22, 36, 24].

The main open question now seems to be how to handle a general noethe-
rian regular scheme, such as those that arise in number theory. In all the
papers cited, except for [18], the strongest results are true only for smooth
varieties over a field.

Many fine papers have been written on this topic — any difference in the
depths to which I manage to expose them are due more to personal limitations
of time and ability than to any judgment of their relative importance.
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1 Algebraic K-theory and cohomology

The Riemann-Roch theorem for a complete nonsingular algebraic curve X
over a field k relates the degree of a line bundle £ to the dimension of its
space I'(X, L) of global sections. The functor I'(X, —) is not an exact functor,
so what really enters into the theorem (on one side of an equation) is the
Euler characteristic, defined by x(£) := > ,(—1)*dim H*(X, £). The Euler
characteristic is additive in the sense that x(£) = x(&') + x(£”) whenever
0—-& — & — & — 0is an exact sequence of (locally free) coherent sheaves
on X. The natural way to prove formulas relating one additive function on
coherent sheaves to another is to work with the universal target for such
additive functions, so Grothendieck defined Ky(X) to be the abelian group
generated by the isomorphism classes [£] of locally free coherent sheaves on X,
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with relations [£] = [£]4[£”] for each exact sequence as before. Alternatively,
one defines K{j(X) by using all coherent sheaves, not just the locally free ones.
Tensor product of coherent sheaves makes Ko(X) into a ring and K{(X) into
a module over it. For a nonsingular quasi-projective algebraic variety X, the
natural map Ko(X) — K{(X) is an isomorphism, because a coherent sheaf
has a resolution of finite length by locally free coherent sheaves.

The group K{(X) has a filtration whose i-th member F*K{(X) is the sub-
group generated by the classes of coherent sheaves whose support has codimen-
sion at least i. The ring Ko(X) has a more complicated filtration with mem-
bers F};KO(X) called the ~y-filtration (formerly, the A-filtration) [14, III, § 1],
arising from a detailed consideration of the way exterior powers of vector bun-
dles behave with respect to short exact sequences of bundles. Let GTE/KO(X )
and GriK/}(X) denote the associated graded groups. When X is a nonsin-
gular quasi-projective algebraic variety the map Ko(X) — K{(X) respects
the filtration [21, X 1.3.2] [14, VI 5.5], and the induced map G Ko(X)q —
GriK}(X)g is an isomorphism [21, VII 4.11, X 1.3.2], where (—)g denotes
tensoring with the field of rational numbers.

The Grothendieck group Ko(X) was an essential tool in Grothendieck’s
proof of the Grothendieck-Riemann-Roch theorem [21], which extended the
Riemann-Roch theorem for curves to nonsingular varieties of any dimension.
The other important ingredient was the Chow ring. An algebraic cycle on X of
codimension ¢ is a formal linear combination of closed subvarieties Z (reduced
and irreducible) of X of codimension i. The group of such cycles is denoted
by Z%(X). Such cycles arise naturally when intersecting two subvarieties as
a way of keeping track of the multiplicities with which the components of
the intersection should be counted. Two algebraic cycles are called linearly
equivalent if they are members of the same family parametrized algebraically
by the points of the affine line A'. The automorphism group of a projective
space contains plenty of straight lines, so linear equivalence of algebraic cycles
allows pairs of cycles whose intersection doesn’t have the maximal possible
codimension to be moved to achieve that condition. Let C H*(X) denote the
group of codimension 7 algebraic cycles on X modulo linear equivalence; it is
the degree i component of a graded ring CH (X)) whose multiplication comes
from intersection of cycles.

One consequence of the Grothendieck-Riemann-Roch theorem is that when
X is a nonsingular quasi-projective algebraic variety, the algebraic cycles of
codimension at least i account for all the classes of coherent sheaves of codi-
mension at least 7, up to torsion. More precisely, given an algebraic cycle, each
component of it is a subvariety Z C X; the coherent sheaf Oz on X gives a
class [Oz] in K{(X). The resulting well-defined map CH*(X) — Gr'K{(X)
induces an isomorphism CH'(X)q — GriK}(X)g [21, XIV 4.2, IV 2.9]. The
proof involves the use of Chern classes to construct an inverse map, and in-
deed, the Chern character, as defined by Grothendieck, gives the following
isomorphism of rings [13, 15.2.16(b)].
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ch : Ko(X)g — @ CH'(X)g (1.1)

In [37] Quillen defined, for n > 0, the higher algebraic K-group K, (X)
for a variety X as the homotopy group m, K (X) of a certain topological space
K (X) constructed from the category of locally free coherent sheaves on X, and
he defined K/, (X) for a variety X as the homotopy group 7, K'(X) of a certain
topological space K'(X) constructed in the same way from the category of
coherent sheaves on X . For a nonsingular quasi-projective algebraic variety X,
the natural map K, (X) — K/, (X) is an isomorphism and both groups have
filtrations analogous to those for Ky and K. It follows from the main result in
[16] that the map respects the filtrations in the sense that F! K, (X) lands in
Fi="K! (X) but the filtrations may disagree rationally. We may suspect such
behavior by considering the spectrum of a field: it has topological dimension 0,
but its étale cohomological dimension can be greater than 0, and the higher K-
groups harbor elements whose Chern characters involve the higher cohomology
groups.

An immediate question is whether there is an analogue of (1.1) for the
higher K-groups that reflects the -filtration on K, (X).

ch: K,(X)g — @(?)Q (1.2)

The abelian groups replacing the question mark should have an interesting
structure in the sense that cognate groups should exist which handle torsion
coefficient groups.

2 Topological K-theory and cohomology

In the late 1950’s Atiyah and Hirzebruch combined Grothendieck’s formalism
with Bott’s periodicity theorem to invent a generalized cohomology theory
called topological K-theory. In this section we sketch the definition of topo-
logical K-theory and the relationship between it and singular cohomology
provided by the Atiyah-Hirzebruch spectral sequence. The basic objects of
study are finite cell complexes, and the spectral sequence arises from the
skeletal filtration of a cell complex. We follow the discussion in [18]; see also
[3].

Let X be a finite cell complex, and let C(X'°P) denote the topological ring
of continuous functions X — C. Although this isn’t the way it was originally
envisioned, it turns out that there is a way [33] to take the topology of a ring
into account when defining the algebraic K-groups, yielding the topological K-
groups K, (X"P) := K, (C(X*P)). Let K(X"'"P) denote the space obtained,
so that K, (X'"P) = 7, K(X"'"P). The space K(X'P) is naturally an infinite
loop space, with the deloopings getting more and more connected.
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Let * denote the one point space. Bott computed the homotopy groups of
K (xtoP).

Kgi(*mp) = WQiK(*tOp) = Z(Z) (21)
K%_l(*top) = ﬂgi_lK(*mp) =0 (2.2)

We write Z(%) above to mean simply the group Z; the annotation () is there
simply to inform us that its elements are destined for the i-th stage in the
weight filtration. The identification Z(1) = K3 (x'°P) can be decomposed as
the following sequence of isomorphisms.

Ky (+%°P) = 1y BGU(C™°P) 2 my BGU1 (CYP)) = my (C*) = Z(1)  (2.3)

A generator for m(C*) gives a generator 8 for Ko(*'°P). Bott’s theorem
includes the additional statement that multiplication by 8 gives a homotopy
equivalence of spaces K (x*°P) — 22 K (x*°P). This homotopy equivalence gives
us a non-connected delooping 272K (xt°P) of K (x*°P), which is K (x"°P) itself.
These deloopings can be composed to give deloopings of every order, and
hence yields an (2-spectrum called BU that has K (x*°P) as its underlying
infinite loop space 2°°BU, and whose homotopy group in dimension 2i is
Z(i), for every integer i.

There is a homotopy equivalence of the mapping space K (x'°P)X with
K(X"™P) and from this it follows that K,(X'"P) = [Xi, 2°0Q"BU], where
X, denotes X with a disjoint base point adjoined. When n < 0 there might
be a bit of ambiguity about what we might mean when we write K, (X"P);
we let it always denote [ X, 2°0"BU], so that K, (X'"P) = K,,12(X*P) for
all n € Z.

It is a theorem of Atiyah and Hirzebruch that the Chern character for
topological vector bundles gives an the following isomorphism.

ch: K, (X'*")g = P HY (X, Q) (2.4)

For n = 0 comparison of this formula with (1.1) shows us that CH*(X)q
(defined for a variety X) is a good algebraic analogue of H?(X,Q) (defined
for a topological space X).

The isomorphism (2.4) was obtained in [2] from a spectral sequence known
as the Atiyah-Hirzebruch spectral sequence. One construction of the spectral
sequence uses the skeletal filtration sk, X of X as follows. (Another one maps
X into the terms of the Postnikov tower of BU, as we’ll see in section 4.)

A cofibration sequence A C B — B/A of pointed spaces and an (2-
spectrum E give rise to a long exact sequence --- — [A,Q®°NE] —
[B/A, Q°E] — [B,2°E] — [A,Q2°E] — [B/A, Q*Q7'E] — ...

We introduce the following groups.

EP? = [sk, X/ sky_ X, 20 P~4BU] (2.5)
DV = [(sk, X)4, 202 P 9BU] (2.6)
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The long exact sequence provides an exact couple --- — DP™14 — EP4
DY — pP=hatl  The explicit computation of the homotopy groups
of BU presented above, together with fact that the space sk, X/sk,_1 X is a
bouquet of the p-cells from X, leads to the computation that
B {CP(X,Z(—q/Z)) %f q ?S even 27)

0 if ¢ is odd

where CP denotes the group of cellular cochains. We will abbreviate this
conclusion by regarding Z(—q/2) as zero when ¢ is odd. The differential
dy : EP — EPT19 s seen to be the usual differential for cochains, so that
EY" = HP(X,7Z(—q/2)). The exact couple gives rise to a convergent spectral
sequence because X is a finite dimensional cell complex. The abutment is
(X4, 200 P 91BU] = K_,_,(X"P), so the resulting spectral sequence may
be displayed as follows.

Byt = HP(X, Z(~q/2)) = K_p_y(X*P) (2.8)

This spectral sequence is concentrated in quadrants I and IV, is nonzero only
in the rows where ¢ is even, and is periodic with respect to the translation
(p,q) — (p,q — 2). Using the Chern character Atiyah and Hirzebruch show
that the differentials in this spectral sequence vanish modulo torsion, and
obtain the canonical isomorphism (2.4).

The odd-numbered rows in the spectral sequence (2.8) are zero, so the
even-numbered differentials are, also. The spectral sequence can be reindexed
to progress at double speed, in which case it will be indexed as follows.

B}t = HP9(X, Z(=q)) = K_po(X*P) (2.9)

3 The motivic spectral sequence

Now let X be a nonsingular algebraic variety, or more generally, a regular
scheme.

Consider a finitely generated regular ring A and a prime number ¢. In
[38], motivated by the evident success of étale cohomology as an algebraic
analogue for varieties of singular cohomology with finite coefficients and by
conjectures of Lichtenbaum relating K-theory of number rings to étale coho-
mology, Quillen asked whether there is a spectral sequence analogous to (2.8)
of the following form, converging at least in degrees —p — ¢ > dim(A) + 1.

By = HE,(Spec(A[01)), Ze(—q/2)) = K_p—g(A) @ Z (3.1)

The spectral sequence would degenerate in case A is the ring of integers in a
number field and either ¢ is odd or A is totally imaginary.
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Beilinson asked ([4], see also [5, p. 182]) whether there is an integral version
of (3.1) serving as a totally algebraic analogue of (2.8) that would look like
this:

ER = HP(X,2(~q/2)) = K _p_o(X) (3:2)

The groups H?(X,Z(—q/2)) would be called motivic cohomology groups, and
comparison with (1.1) suggests we demand that H*(X,Z(i)) = CH*(X). In
Beilinson’s formulation, Z(¢) would be a cohomological complex of sheaves of
abelian groups in the Zariski topology on X concentrated in degrees 1,2,...,t
(except for t = 0, where Z(0) = Z) and H?(X,Z(—q/2)) would be the hyper-
cohomology of the complex. In an alternative formulation [30] advanced by
Lichtenbaum the complex Z(i) is derived from such a complex in the étale
topology on X.

An alternative indexing scheme for the spectral sequence eliminates the
odd-numbered rows whose groups are zero anyway, and looks like this.

B}t = HY9(X,Z(~q)) = K_py(X) (3.3)

4 Filtrations as a source of spectral sequences

The most basic way to make a (convergent) spectral sequence is to start with
a homological bicomplex [31, XI.6], but for more generality one can also start
with a filtered chain complex [31, XI.3], or even just with an exact couple
[31, XI.5]. An exact couple is basically an exact triangle of bigraded abelian
groups, where two of the three terms are the same, as in the following diagram.

DvD

Such exact couples can arise from long exact sequences where the terms are
index by a pair of integers, and, aside from a difference of indices, two of the
terms look the same. If C is a chain complex, and C = F°C D F'C D F?C D

. is a descending filtration by subcomplexes, then the long exact sequences

- — H, (FPT'C) — H,(FPC) — H, (FPC/FPT'C) — H,_1(FPT'C) — ...

provide the exact couple that in turn provides the spectral sequence associated
to the filtration.

More generally, we could start simply with a sequence of maps C' =
FOC « F'C « F?2C « ..., for we may replace the quotient chain complex
FPC/FPHLC with the mapping cone of the map FPC « FPT1(, preserving
the basic shape of the long exact sequences above, which is all that is needed
to make an exact couple.
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Another source of long exact sequences is homotopy theory, where a fi-
bration sequence FF — X — Y of pointed spaces gives rise to a long exact
sequence -+ — m F — m, X — 1Y - 1, 1 F — -+ — 10X — wgY. If
X — Y is any map of pointed spaces, then letting F' be the homotopy fiber
of the map provides the desired fibration sequence. If we insist that X and Y
be homotopy commutative group-like H-spaces (Abelian groups up to homo-
topy) and that the map X — Y be compatible with the H-space structure,
then F' will be an H-space, too, the terms in the long exact sequence will
be abelian groups, and the maps in it will be homomorphisms. Finally, if we
assume that moX — moY is surjective, and define the m, = 0 for n < 0, the
long exact sequence will be exact also at mpY and thus will extend infinitely
far in both directions. Ultimately, we may assume that X — Y is a map of
spectra, in which case a homotopy cofiber for the map X — Y exists, serving
as a complete analogue of the mapping cone for a map of chain complexes.

The long exact sequences of homotopy theory can produce spectral se-
quences, too. For example, let Y be a connected space with abelian fundamen-
tal group, and let Y = FOY « F'Y « F2Y « ... be a sequence of maps be-
tween connected spaces FPY with abelian fundamental group; call such a thing
a filtration of Y or also a tower. By a slight abuse of notation let Q2F?P/P+1y
denote the homotopy fiber of the map FPT'Y — FPY. The long exact se-
quences - -- — m,FPTY — 1, FPY — 1, (QFP/PTY — 1, FPHYY
form an exact couple. (Observe also that mo2FP/Pt1Y appears in the long
exact sequence as the cokernel of a homomorphism between abelian groups,
so naturally is one as well.) The corresponding spectral sequence will converge
to m,Y if for every ¢ and for every sufficiently large p, T, FPY =0 [12, A.6].

If Y is a space, then the Postnikov tower of Y is a filtration Y = FOY «
F'Y — F2?Y — ... that comes equipped with spaces FP/Pt1Y fitting into
fibration sequences FPT'Y — FPY — FP/PH1Y and FP/P*1Y is an Eilenberg
MacLane space K (m,Y, p). The corresponding spectral sequence is uninterest-
ing, because it gives no new information about the homotopy groups m,Y or
the space Y.

More generally, let Y be a spectrum, let Y = FOY «— F1Y « F?2Y «— ...
is a sequence of maps of spectra; call such a thing a filtration of Y. Let
FP/PF1Y denote the homotopy cofiber of the map FPHY — FPY; we call it
the p-th layer of the filtration. The long exact sequences -+ — m FPHY —
T FPY — m FP/PHY — 7, FPHY — .. form an exact couple. The corre-
sponding spectral sequence will converge to m,Y if for every ¢ and for every
sufficiently large p, m, FPY = 0.

If Y is a spectrum, possibly with negative homotopy groups, then the
Postnikov filtration has terms FPY with p < 0.

The Postnikov filtration of the spectrum BU involves Eilenberg-MacLane
spaces F21/2"+1 BU =~ K (Z,2i); the other steps in the filtration are trivial. Tak-
ing a finite cell complex X, the mapping spectra (FPBU)X provide a filtration
of Y := BUX = K(X'P) and fit into fibration sequences (F?*+1BU)X —
(F%BU)* — K(Z,2i)X. The homotopy groups of K(Z,2i)*X turn out to
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be cohomology groups of X, for m,K(Z,2i)* = [Xy A SP,K(Z,2i)] =
(X, PK(Z,2i)] = [ Xy, K(Z,2i — p)] = H*P(X,Z). Indeed, the spectrum
K (Z,2i)%X is the generalized Eilenberg-MacLane spectrum corresponding to
the singular cochain complex of X, shifted in degree by 2i [10, IV.2.4-5], and
the spectral sequence resulting from this filtration can be identified with the
Atiyah-Hirzebruch spectral sequence of X, defined as above using the skeletal
filtration of X; see [20, Theorem B.8].

In general, given a filtration of a spectrum Y, we may ask that the layers
FP/P*1Y be generalized Eilenberg-MacLane spectra, i.e., should come from
chain complexes of abelian groups. Intuitively, such a spectral sequence de-
scribes something complicated (homotopy groups) in terms of something sim-
pler and hopefully more computable (homology or cohomology groups). Ide-
ally, those chain complexes would be explicitly constructible without using
any higher homotopy groups.

The motivic spectral sequences turn out to be of the type just described,
and it’s not surprising, because constructing a filtration of a spectrum is a nat-
ural way to proceed, postponing as long as possible the study of the homotopy
groups themselves. That is the hope expressed in [18].

Here is a further important motivational remark of Goodwillie. If R is a
commutative ring and Y is the K-theory spectrum K (R) derived from projec-
tive finitely generated R-modules, then tensor product over R makes Y into
a ring spectrum. If the proposed filtration is compatible with products, then
FO/1Y ig also a ring spectrum and each cofiber F*/P+1Y is a module over it. If,
moreover, FO/1Y is the Eilenberg-MacLane spectrum Hy that classifies ordi-
nary homology, then it follows that F?/P*1Y must be an Eilenberg-MacLane
spectrum, too, i.e., come from a chain complex of abelian groups. Further work
may be required to make the chain complex explicit, but at least our search
for a suitable filtration can be limited to those compatible with products.

5 Commuting automorphisms

In this section we explain the Goodwillie-Lichtenbaum idea involving tuples
of commuting automorphisms and the theorem [19] that gives a spectral se-
quence relating K-theory to chain complexes constructed from direct-sum
Grothendieck groups of tuples of commuting automorphisms. (The intrusion
of of the direct-sum Grothendieck groups during the construction of the spec-
tral sequence was unwelcome.) One aspect of the proof I want to empha-
size is the “cancellation” theorem for the space Stab(P, Q) of stable isomor-
phisms between projective modules P and Q. It says that Stab(P,Q) and
Stab(P & X, Q @ X) are homotopy equivalent, and requires the ground ring
to be a connected simplicial ring. The proof is sort of similar to Voevodsky’s
proof of his cancellation theorem, which we’ll cover in section 6.



10 Daniel R. Grayson

Let’s consider an affine regular noetherian scheme X. The Fundamental
Theorem [37] says that the map K(X) — K(X x Al) is a homotopy equiva-
lence; this property of the functor K is called homotopy invariance.

There is a standard way of converting a functor into one that satisfies
homotopy invariance, first used® by Gersten in [15] to describe the higher
K-theory of rings developed by Karoubi and Villamayor in [23], an attempt
which turned out to give the right answer for regular noetherian commutative
rings. The standard topological simplices A™ form a cosimplicial space A" :
n +— A™ in which the transition maps are affine maps that send vertices to
vertices. For example, some of the transition maps are the inclusion maps
An~1 < A™ whose images are the faces of codimension 1. Gersten considered
the analogous cosimplicial affine space A’ : n — A™ whose transition maps
are given by the same formulas. We regard A" as a simplez, the set of affine
linear combinations of n+ 1 distinguished points which are called its vertices;
its faces are the subaffine spaces spanned by subsets of the vertices. It is an
elementary fact (see, for example, [19]) that if F' is a contravariant functor
to spaces from a category of smooth varieties that includes the affine spaces,
the G(X) := |n +— F(X x A™)| is homotopy invariant, and the map F — G
is, in some up-to-homotopy sense, the universal map to a homotopy invariant
functor.

Let K(X x A") denote the geometric realization of simplicial space n —
K(X x A™). Tt follows that the map K(X) — K(X x A’) is a homotopy
equivalence. The simplicial space n — K(X x A™) is analogous to a bicomplex,
with the spaces K (X x A™) playing the role of the columns. This particular
simplicial space isn’t interesting, because the face and degeneracy maps are
homotopy equivalences, but we can relate it to some simplicial spaces that
are.

Suppose X and Y are separated noetherian schemes. Then the union of
two subschemes of X x Y that are finite over X will also be finite over X,
and thus an extension of two coherent sheaves on X x Y whose supports are
finite over X will also be finite over X . Thus we may define the exact category
P(X,Y) consisting of those coherent sheaves on X x Y that are flat over X
and whose support is finite over X. If X’ — X is a map, then there is an
exact base-change functor P(X,Y) — P(X',Y).

For example, the category P (X, Spec Z) is equivalent to the category P(X)
of locally free coherent sheaves on X. When X = Spec(R) is affine, P(X) is
equivalent to the category P(R) of finitely generated projective R-modules.
When X = Spec(R) and Y = Spec(S) are both affine, the category P(X,Y)
is equivalent to the category P(R,S) of R-S-bimodules that are finitely gen-
erated and projective as R-modules.

The category P(X,Al) is equivalent to the category of pairs (M, f) where
M is a locally free coherent sheaf on X and f is an endomorphism of M. If R
is a commutative ring and X is the affine scheme Spec R, then M is essentially

2 according to [1, p. 78]
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the same as a finitely generated projective R-module. Similarly, the category
P(X,A") is equivalent to the category of tuples (M, f1,..., fn) where M is a
locally free coherent sheaf on X and fy, ..., f, are commuting endomorphisms
of M.

Let G,,, = Spec Z[u,u~]. (It is a group scheme, but we won’t use its mul-
tiplication operation.) The category P(X,G,,) is equivalent to the category
of pairs (M, f) where M is a locally free coherent sheaf on X and f is an
automorphism of M. The category P(X,G”,) is equivalent to the category
of tuples (M, f1,..., fn) where M is a locally free coherent sheaf on X and
fi,- .., fn are commuting automorphisms of M.

The identity section * : SpecZ — G,, of G,, plays the role of the base
point, so let * denote it. Following Voevodsky, more or less, define the algebraic
circle St to be the pair (G,,, *). Consider the following commutative diagram.

SpecZ ——=G,,

N
SpecZ

From it we see that if F' is any contravariant (or covariant) functor from
schemes to abelian groups, we can define F(S') as the complementary sum-
mand in the decomposition F(G,,) = F(SpecZ) ® F(S') derived from the
following diagram.

*

F(SpecZ) F(Gp)
T~
F(SpecZ)

The result will be natural in F. We can iterate this: considering F'(X xY) first
as a functor of X we can give a meaning to F(S! x Y), and then considering
F(S'xY) as a functor of Y we can give a meaning to F(S! x S!). Usually that
would be written as F(S' A S') if St is regarded as a pointed object rather
than as a pair. We may also define S* := S! x --- x S! as a “product” of ¢
copies of S, and then F(S'), interpreted as above, is the summand of F(G!))
that is new in the sense that it doesn’t come from F(G!;!) via any of the
standard inclusions.

We define Z(t)(X) to be the chain complex associated to the simplicial
abelian group n — Ko(P(X x A", S")), regarded as a cohomological chain
complex, and shifted so that the group Ko(P(X x At;S")) is in degree 0. In a
context where a complex Z*(t) of sheaves is required, we sheafify the presheaf
U — Z*(t)(U), where U ranges over open subsets of X.

Recall the direct sum Grothendieck group K’ (M), where M is a small
additive category. It is defined to be the abelian group given by generators
[M], one for each object M of M, and by relations [M] = [M'] + [M"], one
for each isomorphism of the form M = M’ @& M". If M is not small, but
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equivalent to an additive category M’ that is, we define K (M) := KJ(M’)
and observe that up to isomorphism it is independent of the choice of M’.
It is an easy exercise to check that two classes [M] and [N] are equal in
KSG(M) if and only if M and N are stably isomorphic, i.e., there is another
object C' such that M @ C =2 N @ C. There is an evident natural surjection
K& (M) - Ko(M).

Now we present the motivic cohomology complex encountered in [19]. We
define Z®(¢)(X) to be the chain complex associated to the simplicial abelian
group n — K (P(X x A", S)), reversed and shifted as for Z¢(¢)(X), and we
define a complex of sheaves Z®(t) as before. There is a natural map Z®(t) —
Z°%(t).

If X = Spec(R) is the spectrum of a regular noetherian ring R, then from
[19, 9.7] one derives a spectral sequence of the following form.

B}t = HP™ (L% (—q)(X)) = K_p—q(X) (5.1)

The rest of this section will be devoted to sketching some of the details of the
proof.

The coordinate rings n — R[A"] form a contractible simplicial ring, where

R[A™] = R[T1,...,Ty]. Let’s examine the part in degrees 0 and 1, where we
have the ring homomorphism R < R[T] and the evaluation maps eg,e; :
R[T] = R defined by f — f(0) and f — f(1). The two evaluation maps
allow us to regard a polynomial in R[T], a matrix over R[T], or an R[T]-
module, as a sort of homotopy connecting the two specializations obtained
using the two evaluation maps. There are two simple remarks about such
algebraic homotopies that play a role in the proofs.
Remark 5.1. Firstly, short exact sequences always split up to homotopy, so
working with direct sum K-theory might not be so bad. Here is the homotopy.
Start with a short exact sequence £ : 0 — M’ — M — M" — 0 of R-modules,
and define an R[T]-module M as the pull back in the following diagram.

E: 0 — M'[T] — M — M"[T] — 0
o
E: 0 —» M'[T] — M[T] — M"[T] — 0

The short exact sequence E specializes to £ when T' =1 and to 0 — M’ —
M & M" — M"” — 0 when T = 0, and provides the desired homotopy.
Remark 5.2. Secondly, signed permutation matrices of determinant 1 don’t
matter, as they are homotopic to the identity. Here is an example of such a
homotopy: the invertible matrix

D66

- 10 0-1
specializes to (O 1) at T'= 0 and to (1 0 ) at T = 1.
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Here is an application of the second remark that played a role in the
proof in [19], abstracted for examination. Suppose M is an additive category.
Given two objects M and N of M let’s define a new category Stab(M, N),
the category of stable equivalences between M and N. A stable equivalence
is a pair (C,0) where C € M and 0 : M @ C = N@C. An object of
Stab(M, N) is a stable equivalence. An arrow (C,0) — (C’,¢’) of Stab(M, N)
is an isomorphism class of pairs (D, ) with D € M and ¢ : C & D =R ',
such that 0’ = (I1x ®¥)(0 ® 1p)(1a ® )~ L. In effect, an arrow connects a
stable isomorphism to one obtained from it by direct sum with an identity
isomorphism, underscoring the point that stable isomorphisms related in that
way are not much different from each other.

Given P € M there are natural functors Stab(M, N) < Stab(M & P, N @
P). The rightward map g adds the identity isomorphism 1p to a stable iso-
morphism of M with NV, getting a stable isomorphism of M & P with N & P.
The leftward map p sends an object (D, ) to (P @ D, ).

The composite functor Stab(M, N') £ Stab(M @ P, N® P) £ Stab(M, N)
is the target of a natural transformation whose source is the identity functor.
The arrows in the transformation connect (C,0) to something equivalent to
(C @ P,0 @ 1p). After geometric realization the natural transformation gives
a homotopy from the identity to p o p.

Our goal is to show the functors p and p are inverse homotopy equivalences.
It turns out there is a switching swindle that produces a homotopy from
o p~1for free from the homotopy 1 ~ p o u, which we describe now.

The composite functor Stab(M & P, N & P) £ Stab(M, N) £ Stab(M &
P, N @ P) sends an object (D, 1), where ¢ : (M & P)& D = (N@® P)® D, to
an object of the form (P @ D, 3). The isomorphism 5 : (M & P)® P ® D =N
(N®P)®P®D has 1p as a direct summand, provided by g, but the identity
map is on the first P, which is the wrong one! If only it were on the second one,
we could get a natural transformation as before. An equivalent way to visualize
the situation is to embed the composite map into the following diagram.

Stab(M @ P,N & P) — > Stab(M, N) (5.2)

P2
Stab(M & P& P,N & P& P) —= Stab(M & P,N & P)
P1

Here p; and p2 are analogues of p that deal with the first and second P,
respectively, and ps adds in an identity map on the second P. The square
commutes up to homotopy if ps is used, so we need a homotopy p1 ~ pa.
The trick used is to put ourselves in a world where remark 5.2 applies and
incorporate a homotopy from the identity map to a signed permutation that
switches one copy of P with the other. That world is the world where we are
working over the simplicial coordinate ring R[A’] of A, i.e., M is replaced
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by a simplicial additive category n — M, over R[A’], so such homotopies
are available. The details of that homotopy are the main technical point of
[19, 8.3]. Following Voevodsky, we may refer to the homotopy equivalence
Stab(M, N) ~ Stab(M @ P, N & P) as a cancellation theorem. Now we explain
briefly how it gets used in the construction of the spectral sequence (5.1).

We recall S71S(M), the category constructed by Quillen in [17] whose
homotopy groups are the higher direct sum K-groups of the additive category
M. Tts objects are pairs (M, N) of objects in M, and an arrow (M,N) —
(M',N’) is an isomorphism class of triples (C,a, ) where C € M and « :
M&C = M and B:NoC =, N are isomorphisms. The construction is
designed so moS™LS(M) =2 K (M).

By techniques due to Quillen [37, Theorem B] homotopy equivalences be-
tween naive approximations to the homotopy fibers of a functor yield homo-
topy fibration sequences. The categories Stab(M, N) appear as naive approx-
imations to the homotopy fibers of the functor from the (contractible) path
space of ST1S(M) to S~1S(M). That follows from two observations: a stable
isomorphism of M with N is essentially a diagram of the following type in
S=1S(M);

and an arrow in the category Stab(M,N) is essentially a diagram of the
following type in S~1S(M).

(0,0)

(M&C,N®C)<——(M,N)

T~ |

(M&C®D,N&Ca®D)

Since all the fibers are the same up to homotopy equivalence, a variant of
Quillen’s Theorem B adapted to the simplicial world tells us that any of the
fibers, say Stab(0,0), is almost the loop space of S™1S(M). We have to say
“almost” because not every object (M, N) of S™1S(M) has components M
and N that are stably isomorphic. For an additive category M the obstruction
to stable isomorphism is captured precisely by the group Kg9 (M). In our
situation, M is a simplicial additive category, which means that the space
associated to the simplicial abelian group n — Kga (M,,) enters into a fibration
with the other two spaces. An object of Stab(0,0) is a stable isomorphism of
0 with 0, and is essentially a pair (C,0) where C is an object of M and 6
is an automorphism of C'. That’s how automorphisms enter into the picture.
Proceeding inductively, one encounters the additive category whose objects
are such pairs (C, 6). An automorphism of such an object is an automorphism
of C' that commutes with 6. That explains why, at subsequent stages, tuples
of commuting automorphisms are involved. Starting the game off with M :=
(n+— P(R[A"])) one can see now how Z%(t)(X) arises.
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We discuss the extent to which the map Z®(¢)(X) — Z(t)(X) is a quasi-
isomorphism in section 6.

6 Cancellation and comparison with motivic cohomology

In this section we describe the cancellation theorem of Voevodsky [45] in the
form presented by Suslin in [41, §4]. It is one of the tools used by Suslin to
prove that Z®(t)(X) — Z(t)(X) is a quasi-isomorphism locally on a smooth
variety X, and we’ll also discuss how that goes. We take some liberties with
Suslin’s presentation for the sake of motivation and for the sake of hiding
technicalities. In this section X = Spec(R) and Y = Spec(S) are affine regular
noetherian schemes.

There is a functor P(X,Y) — P(X x G, Y X G,,) arising from tensor
product with the structure sheaf of the graph of the identity map G,, — G,,.

Let K7 (P(X xA",Y)) denote the simplicial abelian group n — K (P (X x
A™Y)), or when needed, the chain complex associated to it. The cancellation
theorem states that the induced map

KP(P(X x A)Y)) —» KP(P(X xS' x A, Y x S)) (6.1)

is a quasi-isomorphism. Roughly speaking, the idea is to use the same switch-
ing swindle as in the previous section. One could imagine trying to construct
the following diagram, analogous to (5.2), with S! here playing the role P
played there.

KP(P(X xS'x A'Y x Sh)) KP(P(X x A,Y))

H2 l ilt
P2

KP(P(X xS'xS' x ALY xS' xSY) T Z KP(P(X xS' x A, Y x S))

P1

(6.2)
Here the map 1 would be external product with the identity map on S', and
hopefully, one could find a map p for which po u ~ 1. The maps p; and ps
would be instances of p, but based on different S! factors. Then one could
hope to use the switching swindle to get the homotopy po p ~ 1 for free.

We may regard a class [M] of K (P(X,Y)) as a direct sum Grothendieck
group correspondence from X to Y. Intuitively, a correspondence is a relation
that relates some points of Y to each point of X. Geometrically, we imagine
that the points (x,y) in the support of M lying over a point z € X give the
values y of the correspondence. Since the support of M is finite over X, each
x corresponds to only finitely many y. Since M is flat over X, the number of
points y corresponding to x, counted with multiplicity, is the rank of rank of
M as a locally free Ox-module near z, and is a locally constant function of
x.
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For example, an element of K (P(X,A!)) is essentially a square matrix
0 of regular functions on X, and to a point z it associates the eigenvalues of
(). An element of K (P(X,G,,)) is essentially an invertible square matrix
0 of regular functions on X, and to a point z it associates the eigenvalues of
6(x), which are nonzero numbers.

We define the additive category of correspondences; its objects are the
symbols [X], one for each noetherian separated scheme X . An arrow [X] — [Y]
is an element of Hom([X],[Y]) := K§(P(X,Y)). The composition [N] o [M]
of correspondences is defined to be [M ®@,. N]. The direct sum [X] & [X'] of
two objects is represented by the disjoint union [X U X'] of schemes, because
KP(P(XUX'Y)) 2 K (P(X, V)KL (P(X',Y)) and KJ (P(X,YLUY")) =
KPP(X, V)@ KS(P(X,Y')) . We define [X]® [X'] := [X x X'] on objects,
and extend it to a bilinear function on arrows.

There is a function Hom(X,Y) — Hom([X], [Y]) which sends a map f to
the class [f] of the structure sheaf of its graph. It is compatible with compo-
sition and defines a functor X — [X] from the category of separated schemes
to the category of correspondences.

A homotopy of correspondences from X to Y will be an element of
Hom([X x A, [Y]). If two correspondences f and g are homotopic, we’ll
write f ~ g. Composition preserves homotopies.

We are particularly interested in correspondences [X]| — [G,,,]. We can use
companion matrices to construct them. Let f =T" + a,_1T" ' +---+ag €
R[T] be a polynomial with unit constant term ag € R*. Since f is monic,
as an R-module P is free with rank equal to n. Since T acts invertibly on
P := R[T]/f, we can regard P as a finitely generated R[T,T~']-module,
hence as an object of P(X,G,,). The eigenvalues of T acting on P are the
roots of f, so let’s use the notation [f = 0] for the correspondence [P)].

Lemma 6.1. If f and g are monic polynomials with unit constant term, then
[f=0]+[g=0]~[fg=0]: [X] = [Gn].

Proof. The exact sequence
0— RIT,T'/f — RIT, T "/fg — R[T,T"]/g — 0
splits up to homotopy, according to 5.1. a

If @ € R* is a unit, it may be regarded as a map a : X — G,,, and then
[a] = [T —a=0].

Lemma 6.2. Ifa,b € R*, then [ab] ~ [a] + [b] — [1] : [X] = [Gw].

Proof. (See [41, 4.6.1].) We compute [a] + [b] = [T —a=0]+ [T —b=0] ~
(T—a)(T—-0b)=0=[T?—(a+bT+ab=0] ~[T?—(1+ab)T + ab =
0 = (T = D(T = ab) = 0] ~ [(T = )] + [(T' = ab) = 0] = [1] + [ab]. The

homotopy in the middle arises from adjoining a new variable V' and using the
homotopy [T?% — (V(a+b)+ (1—V)(1+4ab))T +ab = 0], which is valid because
its constant term ab is a unit. a
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Now consider correspondences of the form [X] — [G;, X G,,]. The simplest
ones are obtained from maps X — G,,, X G, i.e., from pairs (b, ¢) of units in
R. Let [b, ¢] denote such a correspondence.

Lemma 6.3. If a,b,c € R*, then [ab,c] ~ [a,c] + [b,c] — [1,¢] : [X] —
G, X G-

Proof. (See [41, 4.6.2].) The function Hom([X], [G,,]) — Hom([X], [Gyn XGy])
defined by f +— (f®][c])o[D], where D is the diagonal embedding X — X x X,
sends [a] to [a, ] and preserves homotopies. O

Since Hom([X], [Y]) is an abelian group, the convention introduced above
for applying functors to S or to St applies, and we can attach a mean-
ing to Hom([X],[S']) or to Hom([S!],[Y]). If we enlarge the category of
correspondences slightly by taking its idempotent completion we may even
interpret [S!] as an object of the category of correspondences. To do so
we introduce new objects denoted by p[X] whenever X is a scheme and
p € Hom([X],[X]) is an idempotent, i.e., satisfies the equation p?> = p. We
define Hom(p[X],¢q[Y]) := qHom([X],[Y])p € Hom([X],[Y]), and with this
definition composition is nothing new. We define p[X|®¢q[Y] := (p®¢)[X x Y.
A homotopy between maps p[X] = ¢[Y] will be a map p[X] ® [Al] — ¢[Y].

A map f: [X] — [Y] may be said to induce the map qfp : p[X] — ¢[Y], but
that procedure is not necessarily compatible with composition, for in terms of

L . b . .
matrices it is the function (i d) — a. Nevertheless, we will abuse notation

slightly and denote that induced map by f : p[X] — ¢[Y], leaving it to the
reader to understand the necessity of composing f with p and ¢. Similarly, if
we have an equation f = g : p[X] — ¢[Y] or a homotopy f ~ g : p[X] — q[Y],
we’ll understand that both f and g are to treated that way.

We identify [X] with 1[X], and prove easily that [X] = p[X]| @ p[X], where
p:=1—p. Any functor F' from the old category of correspondences to the
category of abelian groups can be extended to the new category by defining
F(p[X]) := F(p)F([X]). For example, with this notation, F([S!]) = F(€[G.)]),
where e is the composite map G,, — SpecZ - G,,. Thus we may as well
identify [S'] with €[G,,], and similarly, [S?] with [S']|®[S!] = (e®e) |G x G, ].

Lemma 6.4. Suppose a,b,c € R*. Then [ab] ~ [a] + [b] : [X] — [S'] and
[ab, c] ~ [a,c] + [b,c] : [X] — [S?]

Proof. Recall our convention about composing with idempotents when neces-
sary. Use 6.2 to get €[ab] ~ &([a]+[b] —[1]) = &([a]+[b]) —e€[1] and then compute
e[l] = [1] = [1] = 0. Use 6.3 to get (e ® €)[ab, ] ~ (e ® €)([a, c] + [b,c] — [1,¢])
and then compute (e ® €)[1,¢] =[1,¢] — [1,¢] — [1,1] +[1,1] = 0. O

Lemma 6.5. Let T, U be the standard coordinates on G, X G,,. Then [TU] ~
0:[S? — [Gn).
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Proof. We compute [TU](e®e) = [TU]-[TU](1®e)—[TU](e®1)+[TU](e®
e) = [TU] - [T) - [U] + [1] ~ 0, applying 6.2. 0

Corollary 6.6. [TU,—TU] ~0:[S?] — [G2)].

Proof. Compose the result of the lemma with the map G,,, — G2, defined by
v — (v, —v). O

Corollary 6.7. [T, U]+ [U,T] ~ 0: [S?] — [G2,].

Proof. Compute 0 ~ [TU,-TU] ~ [T,=TU] + [U,-TU] ~ [T,-T)+ [T, U] +
[U, T+ [U,-U] : [S*] — [G2,] and then observe that [T, ~T] ~ 0 ~ [U, —U] :
[S?] — [G2,], because, for example [T, —T)(e®e) = [T, =T]—[T, -T]—[1, —1]+
[1,-1] =0. 0

Corollary 6.8. [T,U] ~ [U~1,T]:[S?] — [GZ].
Proof. Compute 0 = [1,T] = [UUYT] ~ [U,T] + [U~1,T] : [S?] — [G?

m]’

and then apply 6.7. |
Corollary 6.9. [U~1,T] ~1:[S?] — [S$?].
Proof. Use 6.8 and observe that [T, U] : [S?] — [S?] is the identity map. O

The map [U~1,T] : [S?] — [S?] is an analogue of the signed permutation
<(1) _01> considered in Remark 5.2, and the homotopy found in Corollary
6.9 gives us a switching swindle that can be used to prove the cancellation
theorem.

Having done that, the next task is to construct the map p used in (6.2): it
doesn’t quite exist (!), but one can proceed as follows. Suppose P € P(X X
SLY x St), so Pis an R[T,T~1]-S[V,V~1]-module that is finitely generated
and projective as an R[T, T~']-module. We try to define p[P] := [P/(T"—1)]—
[P/(T"—-V)] € K§(P(X,Y)). It’s easy to check that P/(T™—1) is a projective
R-module. It turns out that for n sufficiently large, multiplication by 7" — V'
on P is injective, and the bound is independent of the ring, so injectivity is
preserved by base change, implying that P/(T™ — V) is flat, hence projective
as an S-module, since it’s finitely generated. To show that p is a left inverse
for p in (6.2), assume that Q@ € P(X,Y) and let P = Q ®g R[T,T~!] with
V acting on P the same way T does, and compute p[P] = [Q"] — [Q"!] =
[@Q]. One handles the problem of choosing n in the definition of p by explicit
computations with cycle classes.

The usual definition of motivic cohomology is this: the chain complex
Z°°"(t), usually called Z(t), is defined as Z°*(t) was, but Ko(P(X,Y)) is re-
placed by the group Cor(X,Y) of finite correspondences, those algebraic cycles
on X x Y each component of which maps finitely and surjectively onto some
irreducible component of Y. See [46] for the equivalence between Z*(t) and
ZB(i). There is a natural map Z<(t) — Z(t), which sends a coherent sheaf
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to its support cycle; according to [50, Corollary 6.32] the map is an equiv-
alence. Thus in order for the spectral sequence (5.1) to be useful, the main
remaining problem is to show that the map Z®(t) — Z®*(t) is an equivalence,
or equivalently, that Z®(t) — Z°T(t) is an equivalence.

Now let’s sketch the rest of the proof of Suslin’s theorem in [41] that,
locally, for smooth varieties over a field, that the map Z®(t) — Z"(t) is an
equivalence.

The basic strategy is to prove that the groups H*(X,Z®(t)) share enough
properties with motivic cohomology H*(X,Z°"(t)) that they must be equal.
First comes the statement that H*(X,Z®(t)) = H*1(X x SL,Z9(t + 1)),
which follows from cancellation. (It corresponds to the part of the Fundamen-
tal Theorem of algebraic K-theory that says that K,,(R) = K,, 11(Spec RxS!)
for a regular noetherian ring R.) Relating S* to G,,,, which is an open subset
of Al, yields a statement about cohomology with supports, H*(X,Z®(t)) =
HE2 (X x AY,Z9(t + 1)), for k > 0. By induction one gets H*(X,Z%(t)) =
Hf{;QOm(X x A™ Z%(t + m)) for m > 0. This works also for any vector bun-

dle E of rank m over X, yielding H*(X,Z®(t)) = Hf&z)’”(E,Z@(t +m)),
where s : X — F is the zero section. Now take a smooth closed subscheme
Z of X of codimension m, and use deformation to the normal bundle to get
H*(Z,28(t)) = HEP™(X, 29 (t +m)).

Now it’s time to show that the map Hj(X,Z%(t)) — H(X,Z(t)) is
an isomorphism, but it’s still not easy. The multi-relative cohomology groups
with supports, Hj(A™, OA™;Z®(t)) arise (analogous to the multi-relative K-
groups described in section 7), and Suslin develops a notion he calls “rationally
contractible presheaves” to handle the rest of the proof.

7 Higher Chow groups and a motivic spectral sequence

In this section we describe Bloch’s approach to motivic cohomology via higher
Chow groups and then describe the argument of Bloch and Lichtenbaum for
a motivic spectral sequence.

The definition of linear equivalence of algebraic cycles amounts to saying
that there is the following exact sequence, in which the two arrows are derived
from the inclusion maps A = A! corresponding to the points 0 and 1.

CH!(X) «+ Z2Y(X) = Z2/(X x AY) (7.1)

The first step in developing motivic cohomology groups to serve in (1.2) or
(3.2) is to bring homological algebra to bear: evidently CH*(X) is a cokernel,
and in homological algebra one can’t consider a cokernel without also consid-
ering the kernel. One way to handle that is to try to continue the sequence
above forever, forming a chain complex like the one in (7.2).

ZHX) — ZH (X x A) — ZY(X x A?) — ... (7.2)
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For this purpose, Bloch used the cosimplicial affine space A’, introduced ear-
lier, and algebraic cycles on the corresponding cosimplicial variety X x A'.
He defined Zi(X,n) C Z%(X x A™) to be the group of algebraic cycles of
codimension 7 on X x A" meeting all the faces properly. (T'wo subvarieties
are said to meet properly if the codimension of the intersection is the sum of
the codimensions of the subvarieties.) The result is a simplicial abelian group
n — Z'(X,n). Its face maps involve intersecting a cycle with a hyperplane,
keeping track of intersection multiplicities. Bloch defined the higher Chow
group CH*(X,n) as its homology group in degree n, and we’ll introduce the
auxiliary notation H?*~"(X,ZP!(i)) for it here to make the anticipated use
as motivic cohomolgy more apparent. A useful abuse of notation is to write
7P (i) = (n — Z%(X,2i —n)), leaving it to the reader to remember to re-
place the simplicial abelian group by its associated chain complex. We let
H2=n(X, QP (i) = H2~"(X,ZP\(i)) ® Q.

A good survey of results about Bloch’s higher Chow groups is available
in [27, 11, §2.1]; for the original papers see [6], [7], and [26]. The main results
are that H™ (X, ZB!(4)) is homotopy invariant, fits into a localization sequence
for an open subscheme and its complement, can be made into a contravariant
functor (on nonsingular varieties), and can be compared rationally with K-
theory.

For example, in [7] Bloch proves a moving lemma which implies a local-
ization theorem for ZP!. Suppose X is quasiprojective, let U C X be an open
subset, let Z = X —U, and assume Z has codimension p in X. The localization
theorem provides the following long exact sequence.

~— HI7WU,ZP\(i)) — HY7?P(2,2°\(i — p)) — H? (X, ZP'(i))
— HI(U,ZBY(i)) — ---

In [6, 9.1] Bloch presents a comparison isomorphism

o

7KL (X)g — @ HTT(X, Q)
d

for X a quasiprojective variety over a field k. The proof (with some flaws
corrected later) proceeds by using the localization theorem to reduce to the
case where X is affine and smooth over k, then uses relative K-theory to
reduce to the case where m = 0, and finally appeals to Grothendieck’s result
(1.1). In the case where X is nonsingular the isomorphism 7 differs from the
higher Chern character map ch by multiplication by the Todd class of X,
which is a unit in the Chow ring, so Bloch’s result implies that the map
ch : K,,(X)g =N D, H*"(X,QP!(3)) is an isomorphism, too. In [26, 3.1]
Levine proves the same result, but avoids Chern classes by using a more
detailed computation of the relative K-groups. Finally, a detailed summary
of the complete proof when X is nonsingular is available in [27, III, §3.6].

Now we sketch some details of the argument from the unpublished preprint
[8] for a motivic spectral sequence for the spectrum of a field k.
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A cube of dimension n is a diagram (in some category) indexed by the
partially ordered set of subsets of the set {1,2,...,n}. The homotopy fiber
hofib C' of a cube C' of dimension n of spaces or spectra can be constructed
inductively as follows. When n = 0, hofib C' is the single space in the diagram.
For n > 0 consider the two cubes C’” and C” of dimension n — 1 appearing as
faces perpendicular to a chosen direction and take hofib C' to be the homotopy
fiber of the map hofib C’ — hofib C".

If Yi,...,Y, are open or closed subschemes of a scheme X, their intersec-
tions Y;, N---NY;, form a cube of schemes. Applying the K-theory functor
(which is contravariant) gives a cube of spectra. When Y7,...,Y,, are closed

subschemes, the homotopy fiber of the cube is denoted by K(X;Y1,...,Y,)
and is called multi-relative K-theory. If Y1 = X — V is an open subscheme
of X, the homotopy fiber of the cube is denoted by KV (X;Ys,...,Y,),
and is called multi-relative K-theory with supports in V. If V is a family
of closed subsets of X that is closed under finite unions, then the induc-
tive limit colimy ¢y KV (X;Ya,...,Y,) is denoted by KY(X;Ys,...,Y,), and
is called multi-relative K -theory with supports in V. If W is another such
family of closed subsets of X, then colimy ¢y colimy ey KY~W(X —W; Y, —
W,...,Y, — W) is denoted by KY~""W(X;Y5,...,Y,), which one might call
multi-relative K-theory with supports in V away from W. Finally, if p € Z,
we let K;}_W(X; Ya,...,Y,) be the homotopy group m, KY "W (X;Yas,...,Y,),
and similarly for the other notations.

The notation for multi-relative K-theory is applied to the simplices AP =
A? as follows. For a variety X and for any p > 0 we let V™ denote the family of
closed subsets of X x AP which are finite unions of subvarieties of codimension
n meeting X x A™ properly, for each face A™ C AP of the simplex AP. In this
section we are interested in the case where X = Speck.

When K-theory (or multirelative K-theory) with supports in V" is in-
tended, we'll write K™ in place of K¥". The spectrum K™ (X x AP) is
functorial in the sense that if A? — AP is an affine map sending vertices to
vertices, there is an induced map K™ (X x AP) — K™ (X x A9). These maps
can be assembled to form a simplicial space p — K (X x AP) which we’ll
call K" (X x A").

Let Hy, ..., H, be the codimension 1 faces of AP. Let OAP be an abbre-
viation for the sequence Hy,...,Hp, and let X' be an abbreviation for the
sequence Ho, ..., Hp_1.

The main result is [8, Theorem 1.3.3], which states that the following
sequence of multi-relative Ky groups is exact.

= RSO (A5 0A0) L KO (475 0A9) — K (47 )
— K (4771080 — KD (A0 0Ar )

The proof of exactness hinges on showing that the related map

KV (e 0ar) — KYTVT (AP )



22 Daniel R. Grayson

is injective, which in turn depends on a moving lemma that occupies the bulk
of the paper. Two of every three terms in the long exact sequence look like
Kén) (AP; 9AP) with a change of index, so it’s actually an exact couple. The
abutment of the corresponding spectral sequence is the colimit of the chain of
maps like the one labelled i above, and thus is Ko(AP; 9AP), which, by an easy
computation, turns out to be isomorphic to K, (k). The E; term K" (AP; X) is
isomorphic to K n-yr (AP; X), which in turn is isomorphic to the subgroup
of Z™(X,p) consisting of cycles which pull back to 0 in each face mentioned
in X; it follows that the E5 term is CH™ (X, p). The final result of Bloch and
Lichtenbaum is the following theorem.

Theorem 7.1. If k is a field and X = Speck, then there is a motivic spectral
sequence of the following form.

Byt = HP (X, 2% (~q) = K_py(X) (7.3)

We also mention [16, §7], which shows that the filtration of the abutment
provided by this spectral sequence is the ~-filtration and that the spectral
sequence degenerates rationally.

We continue this line of development in section 8.

8 Extension to the global case

In this section we sketch the ideas of Friedlander and Suslin [12] for gener-
alizing the Bloch-Lichtenbaum spectral sequence, Theorem 7.1, to the global
case, in other words, to establish it for any nonsingular variety X. The first
step is to show that the Bloch-Lichtenbaum spectral sequence arises from a
filtration of the K-theory spectrum, and that the successive quotients are
Eilenberg-MacLane spectra. For the subsequent steps, Levine gives an alter-
nate approach in [28], which we also sketch briefly.

The paper [12] is a long one, so it will be hard to summarize it here, but
it is carefully written, with many foundational matters spelled out in detail.

Let A be the category of finite nonempty ordered sets of the form [p] :=
{0,1,2,...,p} for some p, so that a simplicial object is a contravariant functor
from A to some other category. Since any finite nonempty ordered set is
isomorphic in a unique way to some object of A, we can think of a simplicial
object as a functor on the category of all finite nonempty ordered sets.

Recall that the relative K-group K(g") (AP; OAP) is constructed from a cube
whose vertices are indexed by the intersections of the faces of the simplex
AP. Any such intersection is a face itself, unless it’s empty. The faces are
indexed by the nonempty subsets of the ordered set [p], so the intersections
of faces are indexed by the subsets of [p] (including the empty subset), and
those subsets correspond naturally to the vertices of a p+ 1-dimensional cube.
The K-theory space of the empty scheme is the K-theory space of the zero
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exact category, so is a one point space. If Z is a pointed simplicial space (or
spectrum), then by defining Z(¢) to be the one point space, we can apply it
to the cube of subsets of [p], yielding a p 4+ 1-dimensional cube of spaces (or
spectra) we'll call cube, 11 Z. As in [12, A.1] we see that this procedure, when
applied to K(™(A") = (¢ — K™ (A%)), yields a cube whose homotopy fiber
is K™ (AP; OAP).

It is well known that homotopy cofibers (mapping cones) and homotopy
fibers amount to the same thing (with a degree shift of 1) for spectra. Given an
m-~dimensional cube Y of pointed spaces form the homotopy cofiber hocofib Y:
the construction is inductive, as for the homotopy fiber of a cube described
above, but at each stage the mapping cone replaces the homotopy fiber of a
map. Friedlander and Suslin relate the homotopy fiber to the homotopy cofiber
by proving that the natural map hofibY — 2™ hocofibY is a 2m — N + 1-
equivalence if each space in the cube Y is N-connected [12, 3.4]. The proof
uses the Freudenthal Suspension theorem and the Blakers-Massey Excision
theorem.

A cube of the form cube,, Z arising from a simplicial space Z comes with
an interesting natural map

hocofib cube,, Z — X|Z| (8.1)

(see [12, 2.6]), which for N > 1 is N + m + l-connected if each space Z; is
N-connected [12, 2.11]. The proof goes by using homology to reduce to the
case where Z is a simplicial abelian group.

Combining the two remarks above and passing to spectra, we get a map
Ki(n) (AP; OAP) — 71, K™ (A") which is an isomorphism for i < —1. It turns
out that ¢ = 0 (the value occuring in the construction of Bloch and Lichten-
baum) is close enough to ¢ = —1 so that further diagram chasing [12, §5-6]
allows the exact couple derived from the exact couple of Bloch and Lichten-
baum to be identified with the exact couple arising from the filtration of
spectra defined by F™ := |[K(™(A")|, and for the successive quotients in the
filtration to be identified with the Eilenberg-MacLane spectrum arising from
the chain complex defining ZP'.

So much for the first step, which was crucial, since it brings topology into
the game. Next the authors show that K (X x A’) is homotopy invariant
in the sense that it doesn’t change if X is replaced by X x Al; by induction,
the same is true for the product with A”. Combining that with a result of
Landsburg [25] establishes the motivic spectral sequence for X = A™. To go
further, we take X = A™ and m = n and examine K™ (A" x A"). Cycles on
A" x A™ that are quasifinite over A™ have codimension n. A moving lemma
of Suslin asserts that such cycles are general enough, allowing us to replace
K™ (A"xA") by K2(A"xA"), where Q denotes the family of support varieties
that are quasifinite over the base. The advantage here is increased functorial-
ity, since quasifiniteness is preserved by base change. Transfer maps can also
be defined, allowing the globalization theorem of Voevodsky for “pretheories”
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to be adapted for the current situation, thereby establishing the spectral se-
quence when X is a smooth affine semilocal variety over a field. Finally, the
globalization techniques of Brown and Gersten [9] involving hypercohomology
of sheaves of spaces are used to establish the spectral sequence when X is a
smooth affine variety.

Levine’s approach [28] to globalizing the spectral sequence is somewhat
different. Instead of developing transfer maps as Friedlander and Suslin do,
he replaces the K-theory of locally free sheaves by the K-theory of coherent
sheaves (which is called G-theory) so singular varieties can be handled. Then
he develops a localization theorem [28, Corollary 7.10] that provides, when U
is an open subvariety of a variety X, a fibration sequence G ((X —U)xA’) —
G (X x A') — GM™(U x A"). The proof of the localization theorem involves
a very general moving lemma [28, Theorem 0.9] that, roughly speaking, takes
a cycle on U x AN meeting the faces properly and moves it to a cycle whose
closure in X still meets the faces properly. But what’s really “moving” is the
ambient affine space, which is blown up repeatedly along faces — the blow-ups
are then “trianglated” by more affine spaces.

Levine’s final result is more general than the Friedlander-Suslin version,
since it provides a motivic spectral sequence for any smooth scheme X over
a regular noetherian scheme of dimension 1.

9 The slice filtration

In this section we sketch some of Voevodsky’s ideas [43, 47, 49] aimed at pro-
ducing a motivic spectral sequence. The setting is Voevodsky’s Al-homotopy
theory for schemes [32], which can be briefly described as follows. Modern
algebraic topology is set in the world of simplicial sets or their geometric
realizations; the spaces to be studied can be viewed as being obtained from
colimits of diagrams of standard simplices A™, where the arrows in the dia-
gram are affine maps that send vertices to vertices and preserve the ordering
of the vertices. Voevodsky enlarges the notion of “space” by considering a field
k (or more generally, a noetherian finite dimensional base scheme), replacing
the simplices A™ by affine spaces A} over k, and throwing in all smooth va-
rieties over k, as well as all colimits of diagrams involving such varieties. The
colimits may be realized in a universal way as presheaves on the category of
smooth varieties over k. These presheaves are then sheafified in the Nisnevich
topology, a topology intermediate between the Zariski and étale topologies.
Finally, the affine “simplices” A} are forced to be contractible spaces. The re-
sult is the A'-homotopy category, a world where analogues of the techniques
of algebraic topology have been developed. Spectra in this world are called
motivic spectra. In this world there are two types of circles, the usual topo-
logical circle S! and the algebraic circle S} := Spec(k[U, U~1]), so the spheres
S™i ;= 8"~% A'S! have an extra index, as do the motivic spectra and the
generalized cohomology theories they represent. The sphere T := S%!, half
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topological and half algebraic, turns out to be equivalent to the projective
line P!, so the Fundamental Theorem of algebraic K-theory, which identifies
K(PY) with K(A) x K(A) for a ring A, shows that the motivic spectrum
KGL representing K-theory is (2, 1)-periodic.

Voevodsky’s idea for constructing a motivic spectral sequence is to build a
filtration of the motivic spectrum KGL, in which each term FPKGL is to be
a motivic spectrum. As in Goodwillie’s remark in section 4, the filtration is to
be compatible with products, the cofiber FO/'KGL is to be equivalent to the
motivic analogue Hy, of the Eilenberg-MacLane ring spectrum associated to
the ring Z, and hence each quotient F?/P*1 KGL will be an Hz-module. Mod-
ulo problems with convergence, filtrations of motivic spectra yield spectral
sequences as before.

The slice filtration of any motivic spectrum Y is introduced in [43, § 2]. The
spectrum F?Y is obtained from Y as that part of it that can be constructed
from (2¢, q)-fold suspensions of suspension spectra of smooth varieties. Smash-
ing two motivic spheres amounts to adding the indices, so the filtration is
compatible with any multiplication on Y. The layer s,(Y) := FP/PT1Y is
called the p-th slice of Y.

Voevodsky states a number of interlocking conjectures about slice filtra-
tions of various standard spectra [43]. For example, Conjecture 1 states that
the slice filtration of Hy is trivial, i.e., the slice sg(Hz) includes the whole
thing.

Conjecture 10 (the main conjecture) says so(1) = Hy, where 1 denotes
the sphere spectrum. By compatibility with multiplication, a corollary would
be that the slices of any motivic spectrum are modules over Hy,.

Conjecture 7 says that so(KGL) = Hz. Since KGL is (2,1)-periodic,
Conjecture 7 implies that s,(KGL) = X?%9Hy, thereby identifying the Fs
term of the spectral sequence, and providing a motivic spectral sequence of the
desired form. In [47] Voevodsky shows Conjecture 7 is implied by Conjecture
10 and a seemingly simpler conjecture that doesn’t refer to K-theory or the
spectrum representing it. In [49] Voevodsky proves Conjecture 10 over fields
of characteristic 0, providing good evidence for the conjecture in general.

10 Filtrations for general cohomology theories

We'll sketch briefly some of Levine’s ideas from [29] that lead to a new re-
placement for the spectral sequence construction of Bloch-Lichtenbaum [8].
Levine’s homotopy coniveau filtration is defined for a contravariant functor
FE from the category of smooth schemes over a noetherian separated scheme
S of finite dimension to the category of spectra, but for simplicity, since some
of his results require it, we’ll assume S is the spectrum of an infinite field k.
In section 7 we defined K-theory with supports. The same definitions can
be applied to the functor E as follows. If V is a closed subset of X, we let
EV(X) denote the homotopy fiber of the map F(X) — E(X — V). If Vis a
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family of closed subsets of X that is closed under finite unions, then we let
EY(X) denote the inductive limit colimy ¢y EY (X).

For each smooth variety X Levine provides a natural filtration F(X) =
FYE(X) « F'E(X) « F?E(X) « ... of E(X) as follows.

In section 7 we introduced the family of supports V" on X x AP. Levine
modifies the definition of it slightly, considering it instead to be the family of
closed subsets of X x AP of codimension at least n meeting each face in a subset
of codimension at least n in that face; when X is a quasiprojective variety it
amounts to the same thing. We define F*E(X) = |p— EV" (X x AP)|.

We say that E is homotopy invariant if for all smooth varieties X, the map
E(X) — E(X x A') is a weak homotopy equivalence. Homotopy invariance
of E ensures that the natural map E(X) — FCE(X) is an equivalence, so
the filtration above can be regarded as a filtration of F(X). Taking homotopy
groups and exact couples leads to a spectral sequence, as before, but the
homotopy groups of E should be bounded below if the spectral sequence is to
converge. Levine’s azxiom I is homotopy invariance of E.

The terms F"F and the layers F/"+1E of the filtration are contravariant
functors from the category of smooth varieties (but with just the equidimen-
sional maps) to the category of spectra, so the procedure can be iterated. In
particular, we can consider (F"E)(X), (F"E)Y(X), and F"F"E(X).

We say that E satisfies Nisnevich excision if for any étale map f : X' —
X and for any closed subset V' C X for which the map f restricts to an
isomorphism from V' := f~1(V) to V, it follows that the map EV(X) —
EV' (X’) is a weak homotopy equivalence. (A special case is where f is the
inclusion of an open subset X’ of X into X, so that V/ =V C X' C X.)
Levine’s axziom 2 is Nisnevich excision for F.

The first main consequence of assuming that E satisfies Nisnevich excision
is the localization theorem [29, 2.2.1], which, for a closed subset Z of X,
identifies (F"E)%(X) with |p — EYWY(X x AP)|, where W is the family of
closed subsets of X x AP that meet each face in a subset of codimension at
least n and are contained in Z x AP. There is an analogous statement for the
layers.

Define the p-fold T-loop space 24.E of E by the formula (27F)(X) :=
EXX0(X x AP). Levine’s aziom 3 is that there is a functor E’ satisfying axioms
1 and 2 and there is a natural weak equivalence E — Q2 E'.

The first main consequence of axiom 3 (which implies axioms 1 and 2)
is the moving lemma, which is phrased as follows. Let f : ¥ — X be a
map of smooth varieties over k. Let U™ be the family of closed subsets V' C
X X AP of codimension at least n meeting the faces in sets of codimension at
least n, whose pullbacks f~!(V) have the same property, and let F' }LE(X ) =

|p — EY"(X x AP)|. Levine’s moving lemma states that, provided X is a
smooth variety of dimension d admitting a closed embedding into A%t? with
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trivial normal bundle®, the map F}'E(X) — F"E(X) is a weak homotopy
equivalence.

Finally, we say that E is well-connected if it satisfies axioms 1, 2, and 3,
and: (1) for every smooth variety X and every closed subset W C X, the
spectrum EY (X) is —1-connected; and (2) 7, (FO/Y(R4E)(F)) = 0 for every
finitely generated field extension F' of k, for every d > 0, and for every n # 0.

The main virtue of a well-connected functor F is that it allows compu-
tations in terms of cycles. Indeed, Levine defines a generalization of Bloch’s
higher Chow groups that is based on E, which enters into computations of
the layers in the filtration.

The objects F(X) are already spectra, but the additional T-loop space
functor 27 (or a related version called 2p1) allows for the possibility of con-
sidering spectra formed with respect to it, whose terms are spectra in the
usual sense. The associated machinery allows Levine to compare his coniveau
filtration with the slice filtration of Voevodsky in section 9 and conclude they
are equal. Finally, he is able to construct a homotopy coniveau spectral se-
quence, analogous to the Atiyah-Hirzebruch spectral sequence, converging to
the homotopy groups of E(X) (suitably completed to ensure convergence). In
the case where E = K is K-theory itself, he checks that K is well-connected
and that the spectral sequence agrees with the Bloch-Lichtenbaum spectral
sequence of section 7 as globalized by Friedlander-Suslin in section 8.
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