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Let R be a commutative ring. We recall that a formal group law over R is a power series f(x, y) ∈ R[[x, y]]
satisfying the identities

f(x, 0) = f(0, x) = x

f(x, y) = f(y, x)

f(x, f(y, z)) = f(f(x, y), z).

We let FGL(R) denote the subset of R[[x, y]] consisting of all formal group laws over R. Note that a map of
commutative rings R→ R′ induces, by substitution, a map FGL(R)→ FGL(R′). In other words, FGL is a
functor from the category of commutative rings to the category of sets.

Any power series f(x, y) ∈ R[[x, y]] can be written as a formal sum f(x, y) =
∑
ci,jx

iyj , for some
coefficients ci,j ∈ R. However, for f to be a formal group law, the coefficients ci,j must satisfy some
constraints. For example, the first condition gives

ci,0 = ci,0 =

{
1 if i = 1
0 otherwise,

and the second condition gives ci,j = cj,i. The third condition imposes more complicated constraints on the
coefficients ci,j , which we will not write out in detail. However, we note that these constraints are simply
given by polynomial equations that the coefficients ci,j are forced to satisfy. We can summarize the discussion
as follows:

• Giving a formal group law over a ring R is equivalent to giving a collection of elements ci,j ∈ R
satisfying certain polynomial equations.

Let L denote the commutative ring Z[ci,j ]/Q, where Q is the ideal in Z[ci,j ] generated by the polynomial
constraints mentioned above. By construction, the power series f(x, y) =

∑
ci,jx

iyj defines a formal group
law over L. We can restate the previous assertion as follows:

• There is a formal group law f ∈ FGL(L) with the following universal property: for every commutative
ring R, evaluation on f determines a bijection Hom(L,R)→ FGL(R).

The commutative ring L is called the Lazard ring. Our goal in this lecture is to describe the structure of
L.

Remark 1. The existence of L is equivalent to the assertion that the functor FGL is corepresentable. By
general nonsense, the representability of FGL is equivalent to the following pair of properties, which are easy
to verify directly:

(1) The functor FGL carries limits of commutative rings to limits of sets.

(2) The functor FGL carries κ-filtered colimits of commutative rings to κ-filtered colimits of sets, provided
that κ is sufficiently large (in fact, we can take κ to be any uncountable cardinal: this reflects the fact
that a formal group law is determined by a countable number of parameters).
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We first note that the commutative ring Z[ci,j ] has a natural grading, where we define the degree of ci,j
to be 2(i+ j − 1). This grading is dictated by the requirement that if we let x and y have degree −2, then
the expression

f(x, y) =
∑
i,j

ci,jx
iyj

again has degree −2. Then the power series f(f(x, y), z) and f(x, f(y, z)) also have degree −2. It follows
that the coefficients of xiyjzk in the f(f(x, y), z) and f(x, f(y, z)) both have degree 2(i+j+k)−2 in the ring
Z[ci,j ]. Consequently, the grading on Z[ci,j ] descends to a grading on the quotient ring L = Z[ci,j ]/Q: that
is, L has the structure of a graded ring. Since c0,0 = 0 and c1,0 = c0,1 = 1 in L, it is actually a nonnegatively
graded ring, with L0 ' Z.

Remark 2. Our convention that the grading of L is even is irrelevant for this lecture. We introduce this
convention in order to be compatible with the gradings which appear in topology.

Remark 3. The existence of the above grading on L can be explained more abstractly as follows. The col-
lection of formal group laws admits an action of the multiplicative group Gm. That is, for every commutative
ring R, there is a canonical action of R× on FGL(R), given by

fλ(x, y) = λ−1f(λx, λy).

This determines an action of Gm on the affine scheme SpecL representing the functor FGL, which is the
same as the data of a grading of L. The nonnegativity of the grading reflects the observation that the action
of R× on FGL(R) extends to an action of the multiplicative monoid (R,×) on FGL (that is, f(λx, λy) is
formally divisible by λ). The isomorphism L0 ' Z reflects the observation that for any formal group f , we
have fλ(x, y) = x+ y when λ = 0).

Our goal in this lecture is to begin the proof of the following result:

Theorem 4 (Lazard). The Lazard ring L is isomorphic to a polynomial ring Z[t1, t2, . . .], where each ti has
degree 2i.

Theorem 4 implies that it is easy to write down formal group laws over a commutative ring R: one just
needs to select a countable sequence of elements in R. In particular, formal group laws exist in abundance.
Where do these formal group laws come from? We can get a good supply by combining the following pair
of observations:

(a) The power series f(x, y) = x+ y is a formal group law (over any ring R).

(b) If f(x, y) is a formal group law over the ring R and we are given some substitution g(x) = x+ b1x
2 +

b2x
3 + · · · , then the power series gf(g−1(x), g−1(y)) is also a formal group law over R.

In particular:

(c) If g is defined as above, then g(g−1(x) + g−1(y)) is a formal group law over the polynomial ring
Z[b1, b2, . . .].

This formal group law is classified by a map φ : L→ Z[b1, b2, . . .]. We will soon learn that this map is an
isomorphism over the rational numbers (Lemma 10). That is, in characteristic zero, every formal group law
is obtained from the additive formal group law f(x, y) = x+ y by a change of variables. This is not true in
positive characteristic (otherwise, this course would be very short).

Remark 5. The map φ : L→ Z[b1, b2, . . .] is compatible with the gradings, if we let each bi have degree 2i.
To see this, it suffices to note that if each bi has degree 2i, then g(g−1(x) + g−1(y)) has degree −2 when x
and y are both given degree −2.
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Let I denote the ideal in L consisting of elements of positive degree, and let J denote the ideal in
Z[b1, b2, . . .] generated by elements of positive degree (that is, the ideal generated by b1, b2, . . .). Then J/J2

can be identified with the free abelian group on generators {bi}i>0. Note that the quotient I/I2 inherits a
grading from the grading of L. The main step in the proof of Theorem 4 is the following calculation:

Lemma 6. For every integer n > 0, the ring homomorphism map φ : L→ Z[b1, b2, . . .] induces an injection
(I/I2)2n → (J/J2)2n ' Z. The image of this map is pZ if n+ 1 is a prime power pf , and Z otherwise.

We will prove Lemma 6 in the next lecture. For now, let us collect some of the consequences.

Corollary 7. For every integer n > 0, the abelian group (I/I2)2n is (canonically) isomorphic to Z.

In particular, we can choose homogeneous elements tn ∈ I2n = L2n lifting generators for (I/I2)2n ' Z.
This choice of generators determines a map of graded rings θ : Z[t1, t2, . . .]→ L.

Lemma 8. The map θ is surjective.

Proof. We prove by induction on n that θ induces a surjection in degree 2n. The inductive hypothesis shows
that the image of θ contains (I2)2n. Since the image of θ contains a generator for (I/I2)2n ' Z, it contains
I2n = L2n.

We now complete the proof of Theorem 4 as follows:

Lemma 9. The composite map ψ : Z[t1, t2, . . . , ]
θ→ L

φ→ Z[b1, b2, . . .] is injective. In particular, the map θ
is injective.

Since the polynomial rings Z[t1, t2, . . .] and Z[b1, b2, . . .] are torsion-free, they inject into their rational-
izations Q[t1, t2, . . .] and Q[b1, b2, . . .]. Lemma 9 is therefore an immediate consequence of the following:

Lemma 10. The map ψQ : Q[t1, t2, . . .]→ Q[b1, b2, . . .] is an isomorphism of commutative rings.

Proof. Let J ′ denote the ideal in Q[t1, t2, . . .] generated by the elements ti. Then J ′/(J ′)2 is isomorphic
to the free Q-vector space generated by t1, t2, . . .. Using Lemma 6, we see that φQ induces a surjection
J ′/(J ′)2 → (J/J2)Q. Repeating the proof of Lemma 8, we see that ψQ is surjective. Since the vector spaces
Q[t1, t2, . . .] and Q[b1, b2, . . .] have the same dimension in every graded degree, we deduce that ψQ is also
injective.
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