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1. Generalized Cohomology Theories

Definition 1.1. A generalized cohomology theory (reduced) (GCT) is a collection
of functors h̃n : Topop → Ab, n ∈ Z, from a category of topological spaces1 to the
category of abelian groups satisfying the Eilenberg-Steenrod axioms:

i) (Homotopy Invariance) If two morphisms f, g : X → Y are homotopic, then
f∗ = g∗ : h̃n(Y ) → h̃n(X).

ii) (LES for Cofibration) For each cofibration2 i : A ↪→ X there is a long exact
sequence (LES)

(1.1) . . . h̃n(A)oo h̃n(X)
i∗oo h̃n(X/A)

p∗oo h̃n−1(A)
δoo . . .oo

where the connecting homomorphisms δ are natural in X.

If h̃ is a generalized reduced cohomology theory then we obtain an unreduced
generalized cohomology theory by setting hn(X) = h̃n(X q pt) for each n. For
reduced theories, h̃n(pt) = 0 for each n, but for an unreduced theory hn(pt) =
h̃n(S0) may be non-zero and these groups are referred to as the coefficients of the
theory.

The Eilenberg-Steenrod axioms for ordinary cohomology include the following
third axiom:

iii) (Dimension Axiom) hn(pt) = h̃n(S0) = 0 for n 6= 0.
Without it, we are considering a generalized cohomology theory.

As a simple consequence of the axioms, we can deduce the suspension isomor-
phism. Consider the inclusion A ↪→ CA = A× [0, 1]/(a, 0) ∼ (a′, 0) of a topological
space A into the cone over A. This mapping is a cofibration and CA/A is the
suspension of A, denoted ΣA. Since CA is contractible, h̃n(A) = h̃n(pt) = 0 for all
n and thus δ : h̃n−1(A) → h̃n(ΣA) is an isomorphism for each n.

Example 1.2. Some GCT’s:
i) The ordinary cohomology of X.
ii) If X is a smooth manifold, then Hn

DR(X) ' Hn(X,R) by de Rham’s theo-
rem. Considering manifolds is not too terrible a restriction since any finite
CW complex is homotopy equivalent to a manifold with boundary. Sure
there are pathological spaces out there, but most topologists are interested
in reasonable spaces.

iii) K-Theory of a compact manifold X. The group K0(X) is easy to describe,
but Kn(X) for n 6= 0 is more complicated. The set Vect(X) of isomorphism
classes of C-vector bundles over X forms a commutative monoid with re-
spect to the Whitney sum. The Grothendieck enveloping group of this
monoid is K0(X). Using the suspension isomorphism and Bott periodicity,
one defines Kn(X) for n 6= 0 producing a GCT. The coefficient groups are
Kn(pt) = 0 if n is odd and Kn(pt) = Z if n is even.

1specifying that h̃n is a functor from Topop → Ab is a fancy of saying that it is a contravariant
functor Top → Ab. Here Topop denotes the opposite category of Top whose objects are the same,
but whose arrows are reversed.

2A map i : A → X is a cofibration iff for each f ∈ Mor(X, Y ) and g ∈ Mor(A, Y ) such that
f |A is homotopic to g there exists an extension g̃ : X → Y of g and an extension of the homotopy
f |A ∼ g to a homotopy f ∼ g̃.
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There is a correspondence in algebraic topology between generalized cohomology
theories and homotopy spectra. Later in the course, we will discuss this correspon-
dence in more detail.

Definition 1.3. A modular form (with respect to SL(2,Z)) of weight k is a map
f : h = {τ ∈ C|Im(τ) > 0} → C such that

i) f(Aτ) = (cτ + d)kf(τ) where

Aτ =
aτ + b

cτ + d
for each A =

(
a b
c d

)
∈ SL(2,Z);

ii) f is holomorphic on h.
iii) f is holomorphic at i∞.

The third requirement on f may need some explanation. Since f is periodic
with respect to Z by i), it can be viewed as a function on the cylinder h/Z. The
map τ 7→ q = e2πiτ is a bi-holomorphism of h/Z with the punctured unit disk
sending R/Z to the unit circle and i∞ to the origin. So f can also be viewed as a
holomorphic function in the punctured unit disk and thus has a Laurent expansion
in q. If this expansion is, in fact, a Taylor series about 0, then we say that f is
holomorphic at i∞.

Hopkins and Miller introduced a spectrum (and therefore a generalized cohomol-
ogy theory) called topological modular form theory TMF . There is a map

TMF−n(pt) → {integral modular forms of weight n/2}.

2. Examples: H, K, and TMF

We begin with a few remarks concerning our discussion from last time.

i) Last time we claimed that h̃n(pt) = 0 for each n. This is easy to prove
using the LES associated to cofibration i : A → X. If we take A = X = pt,
then i is the identity map. It follows that i∗ is an isomorphism by the
functor property and thus h̃n(X/A) = h̃n(pt) = 0.

ii) If X and Y are topological spaces with base points x ∈ X and y ∈ Y (with
mild additional hypotheses like “well-pointed” etc., which we suppress here)
then the wedge of these spaces is X ∨ Y := (X q Y )/(x ∼ y). Note that
X ∨Y has a base point, namely x ∼ y. If i : X → X ∨Y and j : Y → X ∨Y
are the inclusion maps, then i and j are cofibrations. The LES associated
to

X
i // X ∨ Y p

// X ∨ Y/X = Y

j
rr

is

. . . h̃n(X)oo h̃n(X ∨ Y )
i∗oo

j∗
22 h̃n(Y )

p∗oo . . . .δoo

Since j∗ ◦ p∗ = id, p∗ must be injective and hence δ is the zero map. Thus,
the portion of the LES displayed is actually a short exact sequence (SES)
and j∗ is a section, so the sequence is split. This implies that h̃n(X ∨Y ) '
h̃n(X)⊕ h̃n(Y ) for each n.
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Let us introduce some notation. We will write X+ for Xqpt. Recall from lecture 1
that hn(X) := h̃n(X+). From the previous remark it then follows that hn(XqY ) =
hn(X)⊕ hn(Y ) for each n. One should take from this that the wedge is to pointed
spaces what disjoint union is to general spaces.

iii) The reduced cohomology of Sn for each n determines the coefficients of
the corresponding unreduced theory. Indeed, h̃q(Sn) = h̃q(ΣSn−1) '
h̃q−1(Sn−1) ' . . . ' h̃q−n(S0) ' h̃q−n(pt+) ' hq−n(pt). More generally,
hq−n(X) = h̃q−n(X+) ' h̃q(ΣnX+).

Example 2.1. For compact manifold X, we define K−n(X) := K̃0(ΣnX+) for n >
0. The Bott-Periodicity theorem tells us that the sequence has period 2 and we
formally extend to non-negative indices by requiring this periodicity to hold.

Definition 2.2. A multiplicative GCT is a GCT hn together with a product

∪ : hm(X)⊗Z hn(X) → hm+n(X)

which is associative, graded commutative, product is natural in X.

For a multiplicative GCT h we then define h∗(X) as a ring to be the Z-module⊕
n∈Z hn(X) together with the product ∪. Here are some examples of multiplicative

GCT’s.

Example 2.3. i) Ordinary cohomology H∗(X) with the ordinary cup product.
ii) When X is a manifold, the wedge product on forms induces a product in

de Rham cohomology. Via the de Rham isomorphism the ordinary coho-
mology is isomorphic as a ring to the ordinary cohomology of X with real
coefficients.

iii) K∗(X) (on K0(X) this multiplication is induced by tensor product of vector
bundles).

iv) TMF ∗(X).

One reason to work with cohomology as opposed to homology is that cohomology
(coefficients in a field) has an algebra structure whereas homology has the structure
of a co-algebra and we are used to working with algebras.

Returning now to the subject of topological modular forms, let us note that there
are two flavors of the subject. One is the “connective3 version,” the GCT tmf∗ and
the other is the “periodic4 version,” the GCT TMF∗. More precisely, there exists
a “periodicity element” u ∈ tmf−242

(pt) and a map tmf∗(X) → TMF∗(X) which
we can use to think of u as an element of TMF−242

(pt). If π : : X → pt denotes
the projection, then the map

TMFn(X) → TMFn−242
(X)

α 7→ π∗u ∪ α

3In general a GCT h is said to be connective if hn(pt) = 0 for n > 0.
4A GCT h is periodic if there exists ` such that hn ⇐ hn+` for each n.
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is an isomorphism. The map tmf∗(X) → TMF∗(X) factors through the localization
tmf∗(X)[u−1] at u, to an isomorphism

tmf∗(X) //

''OOOOOOOOOOO
TMF∗(X)

tmf∗(X)[u−1]

77ooooooooooo

specified by α
uk 7→ u−k(α). This is an isomorphism of graded commutative rings if

we specify deg
[

α
uk

]
= deg α− k(−242). In other words, adjoining u−1 makes tmf∗

periodic.
Let’s examine the analog of this in K-theory. A convention in topology is to

denote connective theories by lower case letters and periodic theories by upper case
letters. Connective K-theory is denoted k∗(X) and periodic K-theory is denoted
K∗(X). By Bott’s periodicity theorem, we know that K∗(X) is 2-periodic. The
periodicity element we will denote by u ∈ K−2(pt) = K̃−2(S0) ' K̃0(S2) (sus-
pension isomorphism). Viewed as an element of K̃0(S2), u is the difference of the
trivial line bundle from the Hopf line bundle. The analog of the isomorphism above
says that K∗(X) ' k∗(X)[u−1]. As a graded ring K∗(pt) ' Z[u, u−1] where u has
degree −2, whereas k∗(pt) ' Z[u]. So we see that you pass from connective to
periodic K-theory by inverting the periodicity element.

We will finish today with some more background on modular forms. As before,
let h denote the upper half plane in C and recall that τ 7→ e2πiτ is a biholomorphism
of the cylinder h/Z with the punctured unit disk D0. Any Z-periodic holomorphic
function on h can then be regarded as a function of q, holomophic in D0.

Definition 2.4. A modular form of weight k is a holomorphic function f : h → C
such that

i) f(Aτ) = (cτ + d)kf(τ) for each A =
(

a b
c d

)
∈ SL(2,Z)

ii) f is holomorphic at i∞, i.e., the q-expansion f =
∑

n∈Z anqn has an = 0
for n < 0.

We write Mk for the set of modular forms of weight k and note that Mk is
naturally a complex vector space. Then we set M∗ =

⊕
k∈ZMk and regard it as a

Z-graded C-algebra. After all, the pointwise product of a modular form of weight
k with one of weight ` is a modular form of weight k + `.

We state without proof the following result from the theory of modular forms.

Theorem 2.5. M∗ = C[c4, c6] where the subscript denotes the weight and

c4 = 1 + 240
∑
n>0

σ3(n)qn,

c6 = 1− 504
∑
n>0

σ5(n)qn

and σr(n) =
∑

d|n dr.

Definition 2.6. A modular form is integral if the coefficients in its q-expansion
are integers.
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In order to keep track of the reversal of signs and weights and factors of two, we
offer the following non-standard notation. Let

mfn = {integral modular forms of weight − n
2 }

and set
mf∗ =

⊕

n∈Z
mfn

as a Z-graded ring. Writing the superscript n on mfn is in analogy with cohomology
and is intended to help us to remember that the weight is negative. With this
notation, we can finish by stating a remarkable and non-trivial theorem.

Theorem 2.7. There exists a ring homomorphism tmf∗ → mf∗ which is an iso-
morphism rationally. (Here tmf∗ is shorthand for tmf∗(pt).)

3. Coefficients of TMF

From last time, recall the assertion that there is a homomorphism of graded
rings

Φ: tmf∗ =
⊕

n∈Z tmfn // mf∗ =
⊕

n∈Zmfn ⊂ C[c4, c6]

which is a rational isomorphism. To help eliminate some forehead wrinkling regard-
ing weights, minus signs, and factors of 2, we introduce the following non-standard
terminology.

Definition 3.1. The degree of a modular form is n when the weight −n
2 .

Thus mfn denotes the modular forms of degree n. Note that c4 ∈ mf−8 and
c6 ∈ mf−12. Unfortunately, we are stuck with the indices 4 and 6 which don’t match
with the superscripts −8 and −12, but otherwise these notations and conventions
seem to be a good idea.

It is a good question now to ask what mf∗ is as a graded ring. One might hope
that mf∗ = Z[c4, c6], but this turns out to be not quite correct. Here is an integral
modular form, the discriminant,

∆ = q

∞∏
n=1

(1− qn)24

with ∆ = 1
1728 (c3

4 − c2
6), so it does not lie in Z[c4, c6]. It’s weight is 12 and thus its

degree is −24. The remarkable fact is that by adjoining ∆ to Z[c4, c6] and imposing
the above relation, all integral modular forms are obtained.

Theorem 3.2. mf∗ = Z[c4, c6,∆]/(c3
4 − c2

6 − 1728∆)

Another interesting fact is that the periodicity element u ∈ tmf−242
is carried

by the map Φ onto ∆24 ∈ mf−242
. As a corollary, it follows that map induced by Φ

TMF∗ ' tmf∗[u−1] // mf∗[∆−1]

given by α/uk 7→ Φ(α)/Φ(uk) = Φ(α)/∆24k is a rational isomorphism.

Definition 3.3. A weakly holomorphic modular form is a holomorphic function
f : h → C with the same properties as a modular form with the exception that the
q-series expansion may exhibit at worst a pole type singularity at 0 ∈ D.
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By MFn we will denote the additive abelian group of weakly holomorphic integral
modular forms of weight −n/2, and write

MF∗ =
⊕

n∈Z
MFn

for the graded ring. Recall that mfn = 0 for each n > 0. For comparison, note that
MF24 6= 0 since ∆−1 has a simple pole at zero in the disk.

Lemma 3.4. MF∗ ' mf∗[∆−1]. In particular, MF is periodic with period 24.

Proof. Essentially, we can regard MF as included in mf∗[∆−1], provided we inter-
pret this correctly. If f has a pole of order N at q = 0, then f∆N is holomorphic
at q = 0 and thus defines an element of mf∗. The map

f 7→ f∆N

∆N

then identifies f with an element of mf∗[∆−1], and this prescription for the image
of each f determines a well defined injective homomorphism of graded rings. The
inverse is determined by the assignment g

∆N 7→ g∆−N . ¤

As a side comment, note that the ring C[c4, c6][(c3
4 − c2

6)
−1] is isomorphic to the

ring of weakly holomorphic modular forms. Now MF∗ is periodic with period 24
with periodicity element ∆. Whereas TMF∗ is periodic with period 242. Why?
The smallest power of ∆ in the image of Φ is 24. So we see that Φ is not an integral
isomorphism.

We’ll finish today with some discussion of the coefficient groups of tmf. These
are finitely generated abelian groups and a standard method in topology for deter-
mining these groups is localization and the Adam’s spectral sequence.

Given p prime in Z, recall that Z localized at (p) is the local ring

Z(p) =
{a

b
∈ Q : b prime to p

}
.

Given an abelian group A, the p-localization of A is

A(p) := A⊗Z Z(p).

For example, if q ∈ Z is prime then (Z/qkZ)(p) is zero if q 6= p and Z/qkZ if q = p.
If A is a finitely generated abelian group, then it is isomorphic to a direct sum of a
free abelian group with a direct sum of cyclic subgroups of the form Z/qkZ. Thus
A(p) is a sum of Z(p)’s and (Z/qkZ)’s for q = p. In other words, localization at (p)
throws away all cyclic factors not involving p. By computing the localizations at
all primes p, one can thus reconstruct A.

What makes things computable in tmf is the fact that

tmf∗
Φ // mf∗

induces a isomorphism of p-localizations for p 6= 2, 3. This implies that the p-torsion
in tmf∗ can occur only for p = 2 and p = 3. Tillman Bauer used the Adam’s spectral
sequence to compute the 2-localization and 3-localization of the tmf groups up
through degree 24. Table 1 shows these localizations and the composite information
for tmf.
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4. Compactly Supported GCT’s

The point from the last lecture is that the groups tmfn(pt) can be completely
computed. Of course, rationally we understand what they are because the map Φ
is a rational isomorphism. But to understand torsion we need to look to the paper
of Tillman Bauer [B].

Today we will make progress towards showing how to use tmf to associate in-
variants to manifolds. Doing that will require some preliminary discussion of the
Thom isomorphism and B-structures.

Let X be a locally compact Hausdorff (LCH) topological space.

Definition 4.1. The 1-point compactification of X, denoted X+, is the disjoint
union X q {∞} with the topology consisting of the following open sets

• Each U ⊂ X+ such that U ⊂ X is open in X;
• (X \K)q {∞} where K is a compact subset of X.

Note that if X is compact, then X+ = X q {∞} not just as a set, but also as
a topological space. So there is no clash with the previous notation of X+, as we
were discussing X compact before.

Example 4.2. i) (Rn)+ ' Sn.
ii) (X×Y )+ ' X+∧Y+. Recall here that the smash product ∧ of two pointed

spaces is the Cartesian product X × Y modulo the relation where

X ×∞Y ∪∞X × Y

is identified to a point which is the base point in X+ ∧ Y+.
iii) (X × Rn)+ ' X+ ∧ Sn ' ΣnX+.
iv) If p : E → X is a real vector bundle over X base X, then E+ is isomorphic

to the disk bundle D(E) modulo the sphere bundle S(E) and this can be
identified with the Thom space when X is compact. The idea to take away
from this is that the Thom space is a generalization of the suspension.

If f : X → Y is a continuous map then we define a map f+ : X+ → Y+ in the
obvious way by extension, sending ∞ 7→ ∞. However, this map is continuous only
if f is a proper map.

Let h∗ be a multiplicative GCT . From now on, we will assume that multiplicative
GCT ’s have units 1 ∈ h0(X) which will act as a unit with respect to the cup
product.

Definition 4.3. For X a LCH topological space we define h-cohomology with
compact supports by hn

c (X) := h̃n(X+).

The cup product extends to a multiplication hm
c (X)⊗hn(X) → hm+n

c (X). Note
that the lack of a c subscript in the second factor is not a typo. The product of a
cohomology class with a compactly supported cohomology class is again compactly
supported.

Now, let p : E → X be a rank k real vector bundle over a compact Hausdorff
space X. Let x ∈ X and denote by ix : Ex → E the fiber inclusion in E (which is
a proper map). This induces a map hk

c (E) → h0(pt) given by the composition

hk
c (E)

(ix)∗ // hk
c (Ex) ∼ // h̃k((Ex)+)

∼ // h̃k(Sk)
∼ // h̃0(S0) = h0(pt).



SUSY EFTS AND GC 11

Definition 4.4. An h-Thom class, or h-orientation, of E is a cohomology class
U ∈ hk

c (E) such that for each x ∈ X, U 7→ 1 ∈ h0(pt) under the map hk
c (E) →

h0(pt) induced by the fiber inclusion ix : Ex → E.

Theorem 4.5. The following map is an isomorphism called the Thom isomor-
phism.

hq(X) → hq+k
c (E)

α 7→ p∗α ∪ U
The proof of this theorem is not hard. But note that if E is the trivial vector

bundle over X, then the Thom isomorphism is the suspension isomorphism. The
philosophy here is that having an h-orientation means that E and the trivial bundle
are not distinguished by h.

Moving on, we now want to discuss orientations, spin structures, string struc-
tures, and B-structures. By Gn(Rk) we denote the grassmannian of k-planes in Rn.
For fixed n, these spaces can be regarded as included in one another

. . . ⊂ Gn(Rk) ⊂ Gn(Rk+1) ⊂ . . .

Definition 4.6. By BO(n) we denote the union
⋃

k Gn(Rk) with the direct limit
topology.

The space BO(n) is often referred to as the classifying space for the orthogonal
group O(n) but one can also regard this as the classifying space for rank n real
vector bundles. Over BO(n) there is a tautological vector bundle γn whose fiber
over an n-dimensional subspace V of some Rk is simply V itself together with the
obvious projection map. The isomorphism classes of rank n real vector bundles
over X are in bijection with the homotopy classes of maps X → BO(n). Given a
map f : X → BO(n), the pullback f∗γn is a vector bundle over X and the map f
is called a classifying map for this vector bundle.

Note that there are inclusions BO(n) ⊂ BO(n + 1) ⊂ . . . so that we can define

BO =
⋃
n

BO(n)

with the direct limit topology. Let B → BO be a fibration and let p : E → X be a
rank n real vector bundle over X with classifying map f : X → BO(n).

Definition 4.7. A B-structure on E is a lift f̃ of f making the following diagram
commute on the nose (not just up to homotopy).

B

²²
X

f //

f̃

55jjjjjjjjjjjjjjjjjjjjj BO(n) ⊂ BO

More precisely, a B-structure is a homotopy class of such lifts where the homotopy
must be through a family of such lifts.

Theorem 4.8. If Y is a LCH topological space then there exists a fibration

p : Y 〈n〉 → Y

for each k = 1, 2, . . . which is characterized up to fiber homotopy equivalence by the
following properties

a) π`(Y 〈n〉) = 0 for ` < n
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b) p∗ : π`(Y 〈n〉) → π`Y is an isomorphism for each ` ≥ n.

Definition 4.9. The space Y 〈n〉 is called the (n− 1)-connected cover of Y .

For example Y 〈1〉 is the connected component of the base point in Y and Y 〈2〉
is the universal over of Y . For higher n, it is more difficult to describe.

The Bott periodicity theorem, together with the fact that π`+1BG = π`G for
each ` if G is a topological group, tells us that the following table completely
characterizes the homotopy groups of BO. What this tells us is that BO〈1〉 = BO,

n 0 1 2 3 4 5 6 7 8
πnBO 0 Z/2Z Z/2Z 0 Z 0 0 0 Z

but BO〈2〉 is different. In fact BO〈2〉 = BSO. Similarly, BO〈3〉 = BO〈2〉, but
BO〈4〉 is different. The following diagram shows the non-trivial (n− 1)-connected
covers up through n = 8.

BO〈8〉

²²

= BString

BO〈4〉

²²

= BSpin

BO〈2〉

²²

= BSO

X
f //

<<xxxxxxxx

EE®®®®®®®®®®®®®®®®

HHµµµµµµµµµµµµµµµµµµµµµµµ
BO

In each case the vertical maps are fibrations and we see the dictionary to the
classifying spaces of the groups SO, Spin and another group called String. The
latter is not a compact Lie group, it is an infinite dimensional topological group
best thought of as a 2-group, but we will not discuss that here.

The dictionary is as follows:
• A BO〈2〉 structure on E corresponds to an orientation on E
• A BO〈4〉 structure on E corresponds to a spin structure on E.
• A BO〈8〉 structure on E corresponds to a string structure on E.

The theory of characteristic classes determines for us computable obstructions
to the existence of such structures. For example, a BO〈2〉 structure exists ⇔ the
restriction of E to any S1 is trivial ⇔ the restriction of E to the 1-skeleton is trivial
⇔ the first Stiefel-Whitney class w1E ∈ H1(X,Z/2Z) is zero. A BO〈4〉 structure
exists ⇔ E is trivial over 2-skeleton ⇔ w1E = 0 and w2E = 0. A BO〈8〉 structure
exists ⇔ w1E = 0, w2E = 0, and (p1E)/2 ∈ H4(X,Z) is zero (p1E is the first
Pontryagin class of E and if w1E = 0 and w2E = 0 it is always divisible by 2 in
H4(X,Z)).

Theorem 4.10. An orientation on E determines an H∗(·,Z)-orientation on E.

Theorem 4.11 (Atiyah). A spin structure on E determines a KO-orientation (and
similarly a ko-orientation) on E.

A SpinC structure determines a K-orientation, but this does not fit with the
connected cover discussion of O(n) above.
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Theorem 4.12 (Hopkins, Ando, Strickland). A string structure on E determines
a TMF-orientation (and similarly a tmf-orientation) on E.

5. The push-forward map, bordism groups, and invariants

The Thom isomorphism basically says that the cohomology of the base and the
cohomology with compact supports of a bundle are the same in the presence of an
h-orientation. Our goal today is to get mileage out of the Thom isomorphism to
construct invariants of spaces.

Recall that if E → X is a rank n real vector bundle over X then an h-orientation
on E, or h-Thom class, is a cohomology class U ∈ hn

c (E) such that for each x ∈ X
the map hn

c (E) → h0 induced by the fiber inclusion ix : Ex → E sends U to the
unit 1 ∈ h0.

Let’s consider de Rham cohomology, so hn = Hn
DR. The composition of the

isomorphisms

Hn
c (Rn) // H̃n(Rn

+) // H0(pt) // R

is equivalent to integration over Rn. We consider the n-form associated to the
normalized Gaussian with mean zero and variance 1/t,

ωt =
tn/2

(2π)n/2
e−t‖x‖2/2 dx1 ∧ . . . ∧ dxn.

While not compactly supported in the usual sense of differential forms on Rn, it does
extend smoothly to the 1-point compactification, so [ωt] ∈ hn

c (Rn) by definition.
We see here that the notion of compact support we have defined is slightly weaker
than the usual notion of compact support.

Since ωt integrates to the unit 1 in R for each t, our goal is then to construct Ut

such that (i∗x)(Ut) = [ωt]. Here is one idea. Choose a metric in E and a connection
in E. Write down this form in each fiber and compose with the projection defined
by the connection onto the vertical subspace of the tangent space to E. This way,
we get a form on E with compact support. The difficult part is that one meeds to
show that such a form is closed so that it represents a cohomology class.

Theorem 5.1 (Matthai-Quillen). If E → X is an oriented vector bundle then there
exists a compactly supported closed differential form Ut on E such that Ut|Ex = ωt

for each x ∈ X.

In the proof of this theorem they identify the correction to the above construc-
tion which guarantees a closed representative with the desired properties. In the
presence of an orientation of E this correction is possible.

Let M be a closed manifold of dimension n. An embedding i : M → Rn+k

determines a “normal Gauss map” M → Gk(Rn+k) sending x ∈ M to the normal
space νxM at i(x) in i(M). The normal Gauss map is the classifying map of the
vector bundle νM .

Definition 5.2. A (normal) B-structure (resp. h-orientation) on M consists of:
i) an embedding i : M → Rn+k, and
ii) a B-structure (resp. h-orientation) on νM .

By the Tubular Neighborhood Theorem, we can view νM as a submanifold of
Rn+k. We then define a collapsing map c : Rn+k

+ → ν+ by the assignment x 7→ x if
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x ∈ νM and x 7→ ∞ if x 6∈ νM . Now we are in business because we can construct a
map π! : hq(M) → hq−n(pt) as the composition of the Thom isomorphism followed
by the defining map of compactly supported cohomology followed by c∗ followed
by the suspension isomorphism.

hq(M) ∼ //

π!

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY hq+k
c (νM) ∼ // h̃q+k(ν+)

c∗ // h̃q+k(Rn+k
+ )

∼
²²

hq−n(pt)

The map π! is read “Pi lower shriek” and is the push-forward map in cohomology.5

Example 5.3. What is the push-forward map in de Rham cohomology hn = Hn
DR?

π! : Hq
dR(M) → Hq−n

dR =
{

0 q 6= n
R q = n

It is the zero map unless q = n, in which case it is given by integration over M .
Indeed, given a closed n-form, we multiply by the Thom form to get a closed n-
form on ν(M). Viewed in a tubular neighborhood, this gives a closed (n + k)-form
vanishing at the boundary on a pre-compact open submanifold of Rn+k. Extending
by zero, we obtain a closed (n + k)-form on all of Rn+k. The form is the Thom
form in fiber directions and we use the Fubini theorem to integrate along the fibers
obtaining no contribution to the integral since the Thom form integrates to 1 in
each fiber. The only thing left is the integral over M of the closed form we began
with. The moral of this story is that one should view the push-forward map π! as
an integration.

It is important that we used the normal bundle here. For orientation, spin, and
string structures it turns out not to matter whether we used the normal bundle or
the tangent bundle here. But for other structures (e.g. Pin-structures) these are
different.

Definition 5.4. If M is equipped with a normal h-orientation, then we define an
invariant

α(M) := π!(1) ∈ h−n(pt)

More explicitly, π!(1) is the image under the suspension isomorphism of c∗(U).

Let I = [0, 1] denote the unit interval. We now define a notion of bordism for
manifolds with B-structure. Here is a loose version of the definition.

Definition 5.5. Let M0 and M1 be closed manifolds of dimension n with normal
B-structures. A bordism between M0 and M1 is a manifold with boundary W of
dimension n + 1 embedded in Rn+k × I equipped with a normal B-structure such
that the restriction to Rn+k × {`} is M` for ` = 0, 1 with normal B-structure. If
there exists a bordism between M0 and M1, we say that M0 and M1 are bordant.

5Note that M must be a closed manifold for this to work. The existence of π! really does
depend on all of the data.
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W ⊂ Rn+k+1 × I

Rn+k Rn+k

M0 M1

This definition is loose in the sense that we also need to specify that the boundary
components of W lie entirely in Rn+k × {0, 1} and that W is transversal to this
submanifold, etc., etc., etc. Looking at the picture, you get the idea. It straight-
forward to see that the relation imposed by bordism is an equivalence relation.

Often when you define a notion of bordism you need to specify that some bound-
ary components have the reverse orientation, but since we consider normal B-
structures rather than tangent B-structures, this is not necessary.

Definition 5.6. We define

ΩB
n := {closed n-manifolds w/ normal B-structure}/bordism

to be the set of equivalence classes of closed manifolds of dimension n with normal
B-structure modulo bordism.

Oops! There is some dependence on k left in the definition of normal B-structure.
Given an embedding i : M → Rn+k we can compose with the standard inclusion
Rn+k → Rn+k+1 to obtain an embedding into Rn+k+1. Iterating this process we
obtain a sequence of embeddings

M → Rn+k → Rn+k+1 → . . .

all of which should be identified. Since the definition of B-structure involved BO
and not just BO(k), this identification is compatible with the definition.

Now ΩB
n is an abelian group with operation given by disjoint union and identity

element ∅.
Lemma 5.7. If M0 and M1 are closed n-manifolds with B-structures and M0 and
M1 are bordant then α(M0) = α(M1).

Proof. Exercise. ¤

Corollary 5.8. The invariant α gives rise to a homomorphism of abelian groups
α : ΩB

n → h−n(pt).

Proof. Exercise. ¤
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As usual, we will extend the notation for α defining it to be a homomorphism of
graded abelian groups

ΩB
∗ =

⊕

n∈Z
ΩB

n → h∗ :=
⊕

n∈Z
h−n.

Let’s consider the special cases of BSO and BSpin. For ΩBSO
n the traditional

notation is ΩSO
n and for ΩBSpin

n the traditional notation is ΩSpin
n .

Example 5.9. Now

α : ΩSO
n = ΩBSO

n → H−n =
{
Z n = 0
0 n 6= 0

so this is interesting only in the case n = 0. But closed 0-manifolds are are just finite
sets and two 0-manifolds are bordant as manifolds with normal BSO structures if
and only if they have the same number of points. So the invariant α simply counts
the number of points.

Example 5.10. A closed manifold with a normal BSpin-structure is a Spin-manifold.

α : ΩSpin
n = ΩBSpin

n → KO−n =





Z n ≡ 0 (4)
Z/2Z n ≡ 1, 2 (8)

0 otherwise

In this context, α is the “Atiyah invariant,”

α(M4k) =
{

index(D/M ) k even
index(D/M )/2 k odd

where D/ M is the Dirac operator on M . In the case of k odd, the number index(D/ M )/2
is always an integer and also has an interpretation as the index of the Clifford linear
Dirac operator.

The Atiyah invariant allows us to probe the influence of geometry and topology
on one another. The following theorem is a result of this type.

Theorem 5.11 (Lichnerowicz, Hitchin). If M is a closed Spin-manifold with pos-
itive scalar curvature6, then α(M) = 0.

With dim M = 4k, the case of k even was done by Lichnerowicz and the case
of k odd was tackled by Hitchin. Another result in this direction is the following
theorem from years ago.

Theorem 5.12 (Stolz). If M is a closed simply connected Spin-manifold of dimen-
sion greater than or equal to 5 then M admits a positive scalar curvature metric if
and only if α(M) = 0.

A characterization of this type in dimension 4 is open. Seiberg-Witten invariants
somehow play a role.

6Recall that positive scalar curvature means that small Riemannian balls have smaller volume
than Euclidean balls.
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6. Realizations of the α-invariant

Let M be a closed manifold of dimension n equipped with a normal h-orientation.
Let πM : M → pt denote the projection map. Last time we showed how define
a map πM

! : hq(M) → hq−n(pt) which in the case of de Rham cohomology was
equivalent to integration over M . This “push-forward” map goes by many names,
since it was constructed in each case separately before being absorbed into this
general perspective. Viewing the projection πM : M → pt as a fibration with single
fiber M , this map is sometimes referred to as “integration over the fiber.” In the
context of K-theory, it is known as the Gysin map. In fact, there is a more general
notion of this push-forward map for a more general fibration.

Recall that if a B-structure on a vector bundle E induces an h-orientation on
E, then the invariant α gives rise to a group homomorphism

α : ΩB
n → h−n

[M ] 7→ α(M) := πM
! (1)

where ΩB
n is the nth B-bordism group and 1 ∈ h0(M) is the multiplicative unit.

Example 6.1. There are three main cases where we know that a B-structure induces
an h-orientation.

a) A BSO-structure induces a H-orientation where H is the ordinary coho-
mology functor. The ordinary cohomology of a point is trivial except in
the degree zero where it is Z. The oriented bordism group ΩB

0 consists of
bordism classes of finite sets of points and the invariant α simply counts
the number of points.

b) A BSpin-structure induces a ko-orientation. Now

ko−`(pt) =





Z ` ≥ 0& ` ≡ 0 (4)
Z/2Z ` ≥ 0& ` ≡ 1, 2 (8)

0 otherwise

and α is the Atiyah invariant. In the torsion-free case this give rise to the
Â-genus.

c) A BString-structure induces a tmf-orientation. I like to call the map
α : ΩString

` → tmf−` the Hopkins invariant. Recall from lecture 2 that we
can relate tmf−` with the modular forms mf−` via the rational isomorphism
Φ. The composition

ΩBString
`

α // tmf−` Φ // mf−`

is the Witten genus.

The Â-genus picks out the torsion free information contained in the Atiyah in-
variant. Much the same way, the Hopkins invariant can be viewed as a refinement
of the Witten genus which includes torsion information.

Digression on the Dirac Operator. Let M be a closed spin manifold of dimen-
sion n = 4k. There exists a Z/2Z-graded complex vector bundle S = S+⊕S− called
the spinor bundle with a first order differential operator D/ : C∞(S) → C∞(S) called
the Dirac operator. The space of sections C∞(S) is also Z/2Z-graded, and with
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respect to the decomposition C∞(S) = C∞(S+)⊕C∞(S−), the Dirac operator has
the block form

D/ =
(

0 D/−

D/+ 0

)

where D/+ = D/ |S+ and D/− = D/ |S− . More generally, if E is another Z/2Z-graded
complex vector bundle with connection, then one can form the twisted Dirac op-
erator D/E , also denoted D/ ⊗ E mapping C∞(S ⊗ E) → C∞(S ⊗ E). If E is the
trivial line bundle (E− = 0) then D/E = D/ .

The key point is the D/ ⊗ E is elliptic (this is an analysis notion which we will
leave in a black box for the moment) and this implies that the kernel and cokernel
of D/ E are finite-dimensional. Thus one can define

index(D/ E) = dim(kerD/E)− dim(cokerD/ E).

Unfortunately, cokerD/ E = kerD/ †E = kerD/ E since D/E is self-adjoint, so index(D/ E) =
0.

Instead, we look at index(D/+
E). Here (D/+

E)† = D/−E , so the index is not automat-
ically zero. In fact,

index(D/+
E) = dim(kerD/+

E)− dim(kerD/−E) = sdim (kerD/E)

where sdim denotes the super dimension.

Digression on Curvature. Let M be a Riemannian manifold of dimension n.
Let R denote the trivial rank one bundle. The metric is a bundle map g

TM ⊗ TM

²²

// R

yyttttttttttt

M

satisfying conditions of symmetry and positive definiteness. The Riemann curvature
tensor is a bundle map R

TM ⊗ TM ⊗ TM //

²²

TM

wwnnnnnnnnnnnnn

M

defined using the Levi-Cevita connection on M . The Ricci curvature is a bundle
map Ric

TM ⊗ TM //

²²

R

yyttttttttttt

M

defined by Ric(v, w) =
∑n

j=1 g(R(v, ej)w, ej) where {e1, . . . , en} is an orthonormal
basis of TmM . Due to the symmetries of the Riemann curvature tensor, Ric is a
symmetric bilinear form. Finally, the scalar curvature s ∈ C∞(M) is the smooth
function defined by s(m) =

∑n
j=1 Ric(ej , ej) where {e1, . . . , en} is an orthonormal

basis for TmM .
Having positive scalar curvature means that Riemannian balls in M have smaller

volume that balls of the same radius in Euclidean space. Interpreting the Ricci
curvature is more complicated. One could hope that in a normal ball about m ∈ M ,



SUSY EFTS AND GC 19

the Riemannian volume form pulls-back via the exponential map to the linear
volume form on TmM . Of course, this is too much to hope for as there is distortion,
but the pull-back is related to the linear volume by a density function. The first
interesting term in the Taylor expansion about 0 is quadratic and is equal to the
Ricci tensor. In this sense, the Ricci tensor measures the volume distortion of the
exponential map.

Theorem 6.2 (Lichnerowicz). If M is a closed spin manifold of dimension 4k with
positive scalar curvature, then Â(M) = 0.

Proof. By the index theorem, Â(M) = index(D/+
M ). The Weitzenböck formula

shows that D/ 2 = ∆ + 1
4s : C∞(S) → C∞(S) where ∆ is the rough Laplacian (also

known as the Bochner Laplacian). The spinor bundle has a natural Hermitian inner
product and the rough Laplacian is a self-adoint non-negative operator. Since s > 0
and the manifold is closed, the spectrum of ∆+ 1

4s is bounded away from zero. Thus
kerD/ 2 = 0 which implies kerD/ = 0 and thus sdim kerD/ = index(D/+) = 0. ¤

An interesting consequence of this is the following. The manifold CP2 with its
standard Kähler metric has positive sectional curvature and thus has positive scalar
curvature. However, Â(CP2) = −1/8, so CP2 is not spin.

We will finish today with the definition of the Witten genus. Here it is:

Definition 6.3. Let M be a closed spin manifold of dimension n = 4k. The Witten
genus W (M) ∈ Z[[q]] is defined as follows

(6.1) W (M) := index

(
D/+

M ⊗
∞⊗

m=1

Sqm(TMC − n)

)
.

Clearly, we need to unwind the notation here to understand what this even
means. Now W (M) is a power series in q with integer coefficients, so the right side
of (6.1) needs to be interpreted as a power series.

First of all, TMC denotes the complexified tangent bundle of M and the trivial
bundle of rank n over M is what is meant by n. Thus TMC − n is a virtual vector
bundle. Given a complex vector bundle E → M , one can form the symmetric
powers SkE → M for each k. The total symmetric power is the formal power series

St(E) :=
∞∑

k=0

(SkE)tk = C+ Et + S2Et2 + . . . ∈ Vect(M)[[t]]

where the trivial complex line bundle is denoted C. The total symmetric power has
the exponential property St(E ⊕ F ) = St(E) ⊗ St(F ). So we define St(E − F ) :=
St(E)St(F )−1 where St(F )−1 is the power series obtained by formally inverting the
power series St(F ). All told then, the Witten genus of M is a power series in q
whose coefficients are indices of twisted Dirac operators. The operators act in the
various vector bundles occurring as coefficients in the specified series.

The constant term is a0 = index(D/+
M ) and the linear coefficient is

a1 = index(D/+
M ⊗ (TMC − n)).

The idea is to interpret TMC−n as Z/2Z-graded vector bundle E with E+ = TMC
and E− = n. In general, ak is the index of some twisted Dirac operator D/+

M ⊗ Vk

where Vk is a Z/2Z-graded vector bundle built from the symmetric powers of TMC
and n.
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Theorem 6.4 (Zagier). If M is a string manifold of dimension n then the Witten
genus is the q-expansion of an integral modular form of weight n/2.

This theorem has a remarkable consequence, namely that the coefficients of
W (M) = a0 + a1q + a2q

2 + . . . must be entirely determined by the first few. For
example, if the dimension of M is smaller than 24, then W (M) ∈ Mn/2 ⊂ M∗ =
C[c4, c6], so Mn/2 has dimension less than or equal to 1 for n/2 < 12 or, equivalently,
n < 24. Thus W (M) is entirely determined by a0 ∈ Z.

7. A Motivating Conjecture

Last time we discussed the Witten genus. Heuristically, this integral modular
form can be thought of as the S1-equivariant index of the Dirac operator on the
free loop space of a manifold. It is known how to construct a spinor bundle on
the free loop space of a manifold but an appropriate notion of the Dirac operator
is not available in general (D/ has a representation theoretic construction in the
case of the loop space of a homogeneous space). Pushing ahead anyway, the Dirac
operator would commute with the circle action on the loop space, so the kernel and
cokernel would be representations of S1 which we could decompose into irreducible
components indexed by the natural numbers. The difference of the dimensions of
the corresponding components of the kernel and cokernel labeled by n we put as the
nth coefficient in a power series in q. There are heuristic arguments that establish
that this q-series is the Witten genus.

Let us also remark that one can perform the same yoga with the Euler char-
acteristic operator and the signature operator, obtaining similar formulas for the
Witten genus but involving twists of the given operator on M by symmetric and
exterior powers.

Today, we would like to compare and contrast the Hopkins invariant with the
Atiyah invariant. Recall that the Hopkins invariant is a surjective ring homomor-
phism from the string bordism category ΩString

∗ to tmf−∗. By composing with the
rational isomorphism Φ: tmf−∗ → mf−∗ we lose the torsion information in the
Hopkins invariant yet we obtain an integral modular form. The composition

ΩString
∗

α //

W
))TTTTTTTTTTTTTTTTTT tmf−∗

Φ // mf−∗

²²
Z[[q]]

is the Witten genus W .
There is an analogous picture in ko-theory. By Bott periodicity, we need only

specify the coefficient groups7 of ko for −n = 0, 1, . . . , 8. Each one is cyclic and the
table below shows these groups together with their generators.

n 0 1 2 3 4 5 6 7 8
ko−n Z Z/2Z Z/2Z 0 Z 0 0 0 Z
gen 1 η η2 ω µ

7One can interpret the groups ko−n as Grothendieck enveloping groups of modules over Clifford
algebras.
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The element µ is the Bott-periodicity element. The generator η corresponds to
important class by the same name in the stable homotopy of spheres. As a ring
ko−∗ = Z[η, ω, µ]/(2η, η3, ωη, ω2 − 4µ) and if we consider ω

2 as a formal symbol,
we can define a rational isomorphism Φ: ko−∗ → Z[ω

2 ] by the assignments η 7→ 0,
ω 7→ 2(ω

2 ), and µ 7→ (ω
2 )2. The composition of the Atiyah invariant with this map

Φ is the Â-genus.

ΩSpin
∗ // ko−∗ = Z[η, ω, µ]/(2η, η3, ωη, ω2 − 4µ) // Z[ω

2 ]

The value of α(M) is 0 unless [M ] is the bordism class of a manifold of dimension 4k.
In that case Φ(α([M ])) = Â ·(ω

2 )k. When k = 2`+1 this needs some interpretation.
By the relations in ko−∗ the element (ω

2 )2 is equivalent to the Bott periodicity
element µ. Thus (ω

2 )k can be identified with (ω
2 )µ`, but this element is not in

the image of Φ. However, 2(ω
2 )µ` is the image, so we must interpret α([M ]) =

Â(M)(ω
2 )2`+1 as Â(M)

2 · 2(ω
2 )µ`. Fortunately for us, the Â-genus of a spin manifold

of dimension congruent to 4 modulo 8 is always divisible by 2. This has to do
with the relation between Clifford algebras and the Hamiltonian quaternions H in
dimensions congruent to 4 modulo 8.

The following conjecture is what motivated our study of this subject.

Conjecture 7.1 (Höhn,Stolz ’94). If M is a string manifold of dimension 4k with
positive Ricci curvature, then W (M) = 0.

Previously we gave an interpretation of positive scalar curvature, namely that
the exponential map contracts the volume of a small Euclidean ball about the origin
in the tangent space when mapping it to a Riemannian ball in the manifold. Having
positive Ricci curvature means that volumes contract under the exponential map
for every small shape about the origin, not just a small ball.

Here is some evidence for the conjecture:
a) This is true for n < 24 because in that case the Witten genus is determined

by its constant term a0. Having positive Ricci curvature implies that the
manifold has positive scalar curvature and the Lichnerowicz argument can
be made to show that a0 = 0.

b) It is true for compact semi-simple Lie groups. The bi-invariant metric has
positive Ricci curvature and the Witten genus vanishes.

c) It is also true for homogeneous spaces of such groups.
d) If M is a complete intersection in CPn/2+k, the conjecture also holds.

The idea was to apply the Lichnerowicz strategy to argue about D/LM . Heuristi-
cally, the scalar curvature of LM might be the integral of the contraction of RicM

with the tangent vector to the loop. Unfortunately, this does not quite work due to
analytical difficulties, but it hints as to how the Ricci curvature on M might be con-
nected with the scalar curvature of LM . There does exist a Weitzenbock formula
for twisted Dirac operators D/ M ⊗ E. The hope is that one can use positivity of
the Ricci curvature on M to prove that all of the twisted Dirac operators D/ M ⊗Ei

arising in the definition of the Witten genus are invertible using the Lichnerowicz
argument.

Unfortunately, if one could argue this way, one would prove too much. The
argument would not use the string structure in any way. It is known that the
Witten genus of HP2 is non-zero, but on the other hand HP2 has positive Ricci
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curvature and is a homogeneous space of the symplectic group. Thus HP2 is not a
string manifold. What is needed is a translation of the string condition into a more
concrete statement about the manifold M .

In search of such a condition, our story now turns to quantum field theory. There
are at least three ways to think about quantum field theory from a mathematical
perspective. We roughly enumerate these as follows:

(1) Atiyah-Segal axioms
(2) Constructive/Algebraic Quantum Field Theory (Wightman, Osterwalder-

Schrader, Glimm-Jaffe)
(3) Vertex Operator Algebras (VOAs) (Borcherds, Lepowski, Kac)

The first is most closely aligned with algebraic topology. The second is analytical
and third is algebraic. The third discussion significantly weakens the required
properties but has the advantage of offering many examples from algebra. The
second is more broad, but also technically more challenging. The first is in some
ways the most general but also the realm in which we are farthest from constructing
examples (although there has been some recent work in this direction by Pickrell).

8. Preliminary Definition of Field Theories

The Z/2Z-graded topological vector spaces form the objects of a category TV
whose morphisms are continuous linear maps of graded vector spaces. Given V ∈
TV, write εV : V → V for the grading involution. The +1 eigenspace of εV is called
the even part of V and is denoted V even or V + interchangeably. Similarly, the −1
eigenspace is called the odd part of V and is denoted V odd or V −.

The category TV is a monoidal category with monoidal structure given by the
completed projective tensor product ⊗. Given V, W ∈ TV, the grading involution
associated to V ⊗W is εV ⊗ εW . The category is also braided with braiding iso-
morphism τ : V ⊗W → W ⊗ V linearly determined by its value on homogeneous
elements by v ⊗ w 7→ (−1)|v||w|w ⊗ v where |v| ∈ {0, 1} is the degree of the homo-
geneous element v ∈ V , i.e., |v| = 0 if v ∈ V even and |v| = 1 if v ∈ V odd. With this
braiding, TV is also a symmetric monoidal category since the diagram

V ⊗W
id //

τ
%%KKKKKKKKKK V ⊗W

W ⊗ V

τ

99ssssssssss

commutes.
In general, the monoidal structure ⊗ of a monoidal category C is symmetric

if there exists an invertible natural transformation T with T 2 = id relating the
functors ⊗ and ⊗ precomposed with interchange of arguments.

The forgetful functor from TV to the semi-category of topological vector spaces is
a symmetric monoidal functor. Those Z/2Z-graded vector spaces which are entirely
even also form a full sub-category of TV.

Temporarily, we denote by d-RB the category whose objects are d − 1 dimen-
sional closed oriented manifolds and whose morphisms are d-dimensional oriented
Riemannian bordisms modulo orientation-preserving isometry. Given an object
Y ∈ d-RB, we write Y for same (d− 1)-manifold but with the opposite orientation.
Disjoint union gives this category a monoidal structure (almost).

Here is a rough definition of field theories.
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Definition 8.1 (Rough). A Riemannian field theory (RFT) of dimension d is a
symmetric monoidal functor

d-RB
E // TV .

Such a functor will be referred to as a d-RFT.

Here is a picture that we will often draw to keep track of the ingredients involved.
We read the bordism from right to left. Note that ∂Σ = Y1qY 0, so we think of Y0

as incoming and Y1 as outgoing.

Y0

E(Y0)

Σ

Y1

E(Y1)
E(Σ)

Now, why were we careful to say that the definition above is a “rough” definition?
Here are some issues that will need to be resolved later.

• As defined d-RB does not have identities. So in particular there is no notion
of isomorphism and no well-defined monoidal structure of interest.

• Ultimately, we want E to be a smooth functor, that is to say it will be
important to work in families.

There are also a number of variations on this theme that are possible. For
example, one could replace Riemannian metrics by other geometric structures.

• If one uses bordisms which are flat Riemannian manifolds, the bordism
category is denoted d-EB, and a symmetric monoidal functor from d-EB to
TV is called a Euclidean field theory (EFT).

• Bordisms with conformal structure gives the category d-CB and a symmet-
ric monoidal functor to TV is a conformal field theory (CFT).

• If the bordisms are simply oriented smooth manifolds then the bordism
category is denoted d-B and a symmetric monoidal functor to TV is called
a topological field theory (TFT).

• If one keeps the Riemannian structure on bordisms but replaces orienta-
tion by spin structure, the category is denoted d-RBSpin and a symmet-
ric monoidal functor to TV is called a Riemannian Spin field theory (d-
RFTSpin).

• One could also replace the (d − 1)-manifold Y with a super manifold of
dimension (d − 1)|δ, the bordisms Σ by super manifolds of dimension d|δ,
and the Euclidean structure by a super Euclidean structure.

With this last modification, one obtains a symmetric monoidal bordism category
d|δ − EB.

Definition 8.2 (Rough). A d|δ-dimensional (supersymmetric) Euclidean field the-
ory (d|δ-EFT) of dimension d|δ is a symmetric monoidal functor d|δ−EB → TV.
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Note that d|0-EB = d-EB. We will discuss this later, but let us point out that
the requirement that bordisms have a super Euclidean structure constrains the
possible values of δ to depend on d. Now it turns out that from a Euclidean spin
field theory it is possible to construct a d|δ-EFT through a functorial process called
“superfication.” Denoting this functor by S, we see that pre-composition with S

d-EB

S $$IIIIIIIII
E◦S // TV

d|δ-EB
E

;;vvvvvvvvv

yields a d-dimensional Euclidean spin field theory from a d|δ-dimensional EFT E.
As another remark, we mention that if one does not want to work in families, this
turns out to be an equivalence of categories, but in families this is not the case.
This distinction is responsible for the interest in much of our later discussion.

An additional variation is to consider field theories over X where X is a smooth
manifold. We replace the objects Y by pairs (Y, f : Y → X) where f is a smooth
map to X, and we replace bordisms Σ with pairs (Σ, F : Σ → X) where F restricts
on the boundary to the maps there. This bordism category is denoted d|δ-EB(X).

Definition 8.3 (Rough). A d|δ-dimensional Euclidean field theory over X (d|δ-
EFT over X) is a symmetric monoidal functor d|δ-EB(X) → TV.

From a mathematical perspective it useful to think of a field theory over X as a
family of Euclidean field theories parameterized by X.

The nice thing about field theories over X is that they pull-back. Given a smooth
map φ : X1 → X2, post-composition with φ gives a symmetric monoidal functor φ∗
and its composition with an EFT over X2 gives an EFT φ∗E over X.

d|δ-EB(X)
φ∗E //

φ∗ ''NNNNNNNNNNN TV

d|δ-EB(Y )
E

::tttttttttt

Definition 8.4 (Rough). By d|δ-EFT(X) we denote the category of all d|δ-EFT’s
over X. The objects of this category are d|δ-EFT’s over X and the morphisms are
invertible natural transformations between such functors.

Since our goal in considering these objects was get a hold of topological infor-
mation, we now need a way to forget the geometric structure while retaining the
essential structure. Adopting a similar term from differential topology we make the
following definition.

Definition 8.5. E0, E1 ∈ d|δ-EFT(X) are concordant if there exists E ∈ d|δ-
EFT(X × R) such that ι∗0E ' E0 and ι∗1E ' E1 where ι` : X → X × R is given by
x 7→ (x, `) for ` = 0, 1.

The set of concordance classes of d|δ-EFT’s over X is denoted d|δ-EFT[X].

9. Examples

Recall that a d|δ-EFT over a manifold X is a symmetric monoidal functor E : d|δ-
EB(X) → TV. We think of such an object mathematically as a family of EFT’s
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parameterized by X. Given a smooth map φ : X1 → X2 we get a symmetric
monoidal functor φ∗ : d|δ-EFT(X2) → d|δ-EFT(X1). In particular, given a point
x ∈ X, we have the inclusion map pt → X so E ∈ d|δ-EFT(X) pulls back to
x∗E ∈ d|δ-EFT(pt). This later category we denote more briefly by simply d|δ-
EFT.

There is a further generalization which we may discuss later, namely d|δ-EFT’s
over X of degree n. These form a category denoted d|δ-EFTn(X) which is also well
behaved under pull-back. By d|δ-EFTn[X] we denote the set of concordance classes
of d|δ-EFT’s over X of degree n.

There is a functor d|δ-EFTn(X) → d-EFTn(X)Spin. For now, we will describe
this only in degree n = 0. In this context it is merely the pre-composition with
the appropriate superfication functor d-EB(X)Spin → d|δ-EB(X). The result is to
basically forget about the super symmetry.

Let us consider some examples.

Example 9.1. Let M be a closed Riemannian manifold of dimension n. Here is an
example of a 1-EFT cooked up from M . The objects of 1-EB are pt and pt. To
pt we associated the vector space C∞(M) equipped with the Frechet topology. To
the interval It = [0, t] we associate the heat operator e−t∆ where ∆ denotes the
non-negative Laplace-Beltrami operator on M . From the physics point of view this
EFT is the (Wick rotated) quantization of a point particle moving in M .

Example 9.2. Now suppose that dim(M) = 4k and that M is also a spin manifold
so that we have a Dirac operator D/ M . By EM we will denote the following EFT.
To pt we associate the space of spinors on M and to the interval It we assign the
operator e−tD/ 2

M .

Many modifications of both of these examples are possible. For example, one
could replace D/ 2

M by that plus a potential, or replace ∆ by ∆ plus a potential.
The reason the second example is of sufficient interest to warrant its own notation

is that is can be extended to a supersymmetric EFT denoted EM ∈ 1|1-EFT. This
is due to the fact that D/ 2

M is the square of an odd operator. The field theory
EM is is the quantization of a super particle moving in M . With this, the 1-EFT
obtained by forgetting the super symmetry is EM . It is also possible to use the
Clifford linear Dirac operator to construct EM ∈ 1|1-EFT−n.

Example 9.3 (Family version). Now suppose that M is a fiber bundle over X with
spin fibers, i.e. the vertical bundle over M is spin. We will now define EM : 1-
EB(X) → TV as follows. To pt together with a map x : pt → X we assign the
space of spinors on the fiber Mx. To the interval It together with a constant map
to X we associate the operator e−tD/ 2

Mx acting in the space of spinors over the fiber
Mx. This operation can be represented as integration against a kernel function and
via the work of Bruce Driver and this kernel can be represented by a path integral.
For the interval together with a more general map to X, we use a path integral
representation to define the operator, but more on that later.

Again, by using the Clifford linear Dirac operator instead one can construct
EM ∈ 1|1-EFTn(X). The following table lists what we know about these theories,
their geometric realizations, and their concordance classes in low dimensions.
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d|δ d|δ-EFTn(X) d|δ-EFTn[X]
0|0 C∞(X) 0
0|1 Ωeven

closed(X) for n even Heven
dR (X)

Ωodd
closed(X) for n odd Hodd

dR (X)
1|1 n = 0 contains category of V.B.’s Kn(X)

with connection.
2|1 ? Conjecture: TMFn(X)

The second row is the result of work of Hohnhold-Kreck-Stolz-Teichner. That
concordance classes of 1|1-EFT’s of degree n over X gives Kn of X is a theorem
of Stolz-Teichner. One can obtain real or complex K-theory here depending on
the base field taken in TV. The partial geometric characterization of 1|1-EFT’s of
degree 0 as being like vector bundles with connection is work of Florin Dumitraescu.

The right hand column of this table is a natural progression in topology. The
notion of complex orientable cohomology theories are related to formal groups. The
additive formal group law corresponds to the de Rham cohomology theory. The
next level of complexity is the multiplicative formal group law and that corresponds
to K-theory. After that is the formal group of elliptic curves which corresponds to
TMF.

As one final comment for today, we would like to mention that, in a certain sense,
field theories give a conceptual explanation of the Chern character which relates
K-theory with the Heven

dR (X). From a 1|1-EFT over X, E : 1|1-EB(X) → TV, we
can produce a 0|1-EFT over X by taking the product with S1. More precisely,
we define a map ×S1 : 0|1-EB(X) → 1|1-EB(X) by sending Σ0|1 → X to the
composition Σ0|1 × S1 → Σ → X where in the first step we project on the first
factor.

This gives a diagram

K0(X) Ch //

²²

Heven(X)

²²
1|1-EFT[X]

×S1
// 0|1-EFT[X]

where the vertical arrows are isomorphisms. Matthias Kreck conjectured that this
diagram commutes and this was proven in the affirmative by Fei-Han.

10. Partition Functions and Physics Motivations

Recall from last time our main conjecture.

Conjecture 10.1. 2|1-EFTn[X] ' TMFn(X).

To prove this conjecture, we would like to establish that concordance classes of
2|1 dimensional Euclidean field theories give a generalized cohomology theory, in
the sense that they satisfy the Eilenberg-Steenrod axioms. Then, one would need
only to compare the coefficients of the theory with those of TMF, but this has so
far proved difficult.

Our goal today is to offer some evidence for this conjecture. To do that we
will need to discuss partition functions. Recall that there is a reduction process by
which one obtains E ∈ 2-EFT from E ∈ 2|1-EFT by forgetting the super symmetry.
We defined the partition function of E to be the partition function of E.



SUSY EFTS AND GC 27

Definition 10.2. The partition function of E ∈ 2-EFT is the function ZE : h → C
whose value on τ ∈ h is the value of E on the torus C/(Z+ τZ).

Perhaps that requires some brief explanation. Since the torus is a closed mani-
fold, we are to regard it as a bordism of the empty set with itself. The functor E
thus assigns to such a bordism an endomorphism of the vector space assigned to
the empty set. But since the empty set is a monoidal unit and E is a monoidal
functor, the vector space is canonically C and such a operator is multiplication by
a particular number. This number is the value of ZE(C/(Z + τZ). Since we built
into the definition that E is a smooth functor this turns out to imply that ZE is a
smooth function on h, but not necessarily holomorphic.

In two dimensions, the only flat closed manifolds are tori. The moduli space
of flat tori (up to isometry) is larger than h, strictly speaking h × R>0. So we
are ignoring some information here. What are the modularity properties of ZE?
Suppose

τ ′ =
aτ + b

cτ + d
for some

(
a b
c d

)
∈ SL(2,Z)

then it is a good exercise to check that the map

C/(Z+ τ ′Z) → C/(Z+ τZ)
[ζ] 7→ [(cτ + d)ζ]

is a diffeomorphism and a conformal equivalence. It is an isometry if and only if
|cτ + d| = 1.

If E were a CFT then we would have automatically that E(C/(Z + τ ′Z)) =
E(C/(Z+ τZ)) but for an EFT we do not expect SL(2,Z)-invariance. However we
do have the following very interesting result.

Theorem 10.3 (Stolz-Teichner). If E is the reduction of E ∈ 2|1-EFTn then ZE

is a weakly holomorphic integral modular form of degree n.

The following diagram shows how the mathematical and physical viewpoints on
these subjects line up.

String Manifolds of dim. n

Quantization

tth h h h h h h h h
πM
!

))TTTTTTTTTTTTTTT

[Non-linear σ-Models] ks Conjecture: Iso +3

Z
**VVVVVVVVVV TMF−n(pt)

Φ
uujjjjjjjjjjjjjjjj

MF−n

The right hand side lives in the mathematical realm. Given a closed string manifold
of dimension n we can use the push-forward map πM

! associated to the projection
π : M → pt to compute the Hopkins invariant α(M) = πM

! (1) ∈ TMF−n(pt).
Using the map Φ, which is a rational isomorphism, we can eliminate the torsion
information and obtain the modular form of degree −n, the Witten genus W (M).
The way Witten came to his definition of this genus however was through the left
hand side of the diagram. Given a closed string manifold of dimension n, one
should quantize 1|1-dimensional super strings moving in M to obtain the super
symmetric non-linear sigma model of M . Let us denote this by σ2(M). As yet,
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this is not well-defined as a mathematical object, but we believe that it gives a 2|1-
EFT of degree −n. By computing the partition function Zσ2(M) (a path integral)
one obtains a modular form of degree −n, which is again the Witten genus, i.e.,
Zσ2(M) = Φ(πM

! (1)). If non-linear sigma models can be constructed as 2|1-EFT’s,
then we can understand the partition function in our previous sense, making that leg
of the diagram well-defined. Our conjecture states that 2|1-EFT−n[pt] is isomorphic
to TMF−n(pt) and this can be implemented by an isomorphism which makes this
diagram commute.

Here is a generalized version of this diagram to the family setting.

String Bundles/X

Quantization

tti i i i i i i i
π!

((QQQQQQQQQQQQQ

[Non-linear σ-Models/X] ks Conjecture: Iso +3

²²Â
Â
Â TMF−n(X)

πX
!vvmmmmmmmmmmmmm

2|1-EFT−n−k[pt] ksConjecture: Iso +3 TMF−n−k(pt)

Suppose that F → M
π−→ X is a fiber bundle of dimension n+k with n-dimensional

string manifold fibers modeled on F . In particular, M is then a string manifold of
dimension n + k. Mathematically, we can construct π!(1) ∈ TMF−n(X). Since the
push-forward map from M factors as πM

! = πX
! ◦π!, we can then apply πX

! to obtain
the element πM

! (1) ∈ TMF−n−k(pt). On the other hand, via physics one writes
down a non-linear sigma model over X, which we denote σ2(M/X). This should be
a 2|1-EFT−n over X, and physically one should think of the base space X as the
space of parameters of the model. By some process, one should be able to obtain
a 2|1-EFT−n over a point. The family version of our conjecture is that there is an
isomorphism between concordance classes of 2|1-EFT−n over X and TMF−n(X).

Now let’s discuss one dimensional EFT’s. The functor E ∈ 1-EFT assigns to a
point a Z/2Z-graded vector space E(pt) and to the interval It = [0, t] and operator
E(It) : E(pt) → E(pt). Due to the fact that the bordisms It form a semi-group
with respect to the monoidal structure in the bordism category 1-EB, operators
assigned to the intervals It must form a continuous semi-group of operators on
E(pt). Furthermore they must be trace class and so must be of the form e−tA

for some operator A. The trace class condition puts restrictions on the spectral
properties of this operator, but we will ignore this for now.

Now if E is the reduction of E ∈ 1|1-EFT, then A is necessarily the square of
an odd operator D acting in E(pt). It turns out that the functor E is completely
determined by the data E(super-pt) = E(pt) and D.

Example 10.4. If M is a Riemannian spin manifold, then we get E ∈ 1|1-EFT by
setting E(pt) to the smooth spinors on M and using the Dirac operator D/M for
D. The reduced field theory E has the same vector space, but one considers the
operator D/ 2

M for the operator A.

It is important to remark that in our discussion in the previous two paragraphs we
have only been discussing the data which determines the EFT. There are theorems
which we have not discussed which connect this data with the definition.

Now, an E ∈ 1|1-EFT−n determines
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(1) a Z/2Z-graded right Cn-module E(pt). (Here Cn denotes the Clifford al-
gebra of Rn.)

(2) an odd Clifford linear operator D : E(pt) → E(pt) with certain properties...

and conversely E is determined by this data. Our goal for the rest of this lecture is
to make progress towards showing that if M is a closed spin manifold of dimension
n, then the Clifford linear Dirac operator on M determines a 1|1-EFT of degree
−n. We will call this EFT the one dimensional non-linear σ-model of M and write
σ1(M).

Definition 10.5. A spin structure on a Riemannian manifold M is a double cov-
ering

Spin(M) //

&&LLLLLLLLLLL
SO(M)

²²
M

where SO(M) is the oriented orthonormal frame bundle of M .

Automatically then, if dimM = n, then Spin(M) → M is a principal Spin(n)-
bundle.

Definition 10.6. Let (V, 〈·, ·〉) be a real inner product space and denote by T (V )
the tensor algebra over V . The Clifford algebra of V is defined as the quotient

Cl(V ) := T (V )/(v ⊗ v + |v|2 · 1: v ∈ V ).

Note that T (V ) is a Z-graded algebra and therefore also a Z/2Z-graded algebra
as well. The ideal of relations in the Clifford algebra is not homogeneous, so the
Clifford algebra of V is not Z-graded, however it is Z/2Z-graded. Furthermore,
there is an important consequence of the relations concerning products of differing
elements of V . By the relation

(v + w) · (v + w) = −‖v + w‖2 · 1
v · v + w · w + v · w + w · v = −(|v|2 + |w|2 + 2〈v, w〉)

and thus v · w + w · v = −2〈v, w〉 · 1. As a corollary, we see that perpendicular
vectors in V anti-commute as elements of the Clifford algebra.

11. The 1|1-case.

Last time we discussed how topology and physics fit together in our discussion
of Euclidean field theories of dimension 2|1. One of the most encouraging rigorous
results toward completing that diagram is the following.

Theorem 11.1. The partition function of a 2|1-EFT of degree n is a weakly holo-
morphic integral modular form.

Let us remark that we would like to have a stronger version of this diagram, a
connective version of Euclidean field theories which can be related to tmf and thus
to honest integral modular forms mf.
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Here is an analogous diagram in dimension 1|1 in which all arrows are rigorously
defined.

Riemannian Spin Manifolds

ttiiiiiiiiiiiiiiii

))SSSSSSSSSSSSSSS

1|1-EFT−n[pt]

Z **TTTTTTTTTTTTTTTT
ks Iso +3 KO−∗

Φ'Quulllllllllllllll

Z[ω
2 , (ω

2 )−1]

As a graded ring KO−∗ is isomorphic to Z[η, ω, µ, µ−1]/(2η, η3, ηω, ω2 − 4µ) where
the generators η, ω, and µ are in degrees −1, −4, and −8, respectively. Given
a Riemannian spin manifold M , we can construct the Atiyah invariant α(M) ∈
KO−∗. The rational isomorphism Φ determined by ω 7→ ω

2 (interpreted as a formal
generator) sends α(M) to Â(M)(ω

2 )dim M/4 where we interpret the exponent as zero
when dimM is not divisible by four. On the other hand we can construct a 1|1-
EFT of degree equal to dim M , the quantization of a super particle moving in M ,
which we call the one dimensional non-linear σ-model of M , σ1(M). The partition
function depends only on the concordance class of this theory and yields the Â-
genus of M . There is an isomorphism relating 1|1-EFT−∗[pt] and KO−∗ making
the diagram commute.

Recall that 1|1-EFT of degree −n is determined by the pair (V,D) where V is
a Z/2Z-graded topological vector space and a right Cn-module (Cn denotes the
Clifford algebra of Rn) and D is an odd linear operator such that e−tD2

is trace
class for each t > 0. The σ-model σ1(M) comes from (V, D) where V is the space
of Clifford linear spinors on M and D is the Clifford linear Dirac operator on M .

Let’s recall the construction of the group Spin(n). Let Pin(n) denote the sub-
group of the units in Cn generated by the unit vectors in Rn. Given a generator
v, the assignment of v to the reflection in Rn through the hyperplane normal to v
determines a homomorphism Pin(n) → O(n) which is a 2 : 1 cover. The intersec-
tion Pin(n)∩Ceven

n is the group Spin(n) and the previous map restricts to a double
covering of SO(n).

Suppose M is a Riemannian spin manifold of dimension n. Let ∆ be a Z/2Z-
graded representation of Spin(n). The choice of this representation gives rise to a
spinor bundle S = Spin(M)×Spin(n) ∆ → M . Of course S decomposes as S+ ⊕ S−

into even and odd parts where S± = Spin(M) ×Spin(n) ∆±. Note that the factors
∆± are representations of Spin(n), but not of Pin(n) since the latter group has odd
elements.

The Levi-Cevita connection in TM induces a connection in the principal SO(n)-
bundle SO(M) which lifts to a connection in Spin(M). This, in turn, induces a
connection in the associated bundle S and a covariant derivative ∇ : C∞(S) →
C∞(T ∗M ⊗ S). The metric gives an isomorphism T ∗M → TM and allows us to
define a fiberwise action of the Clifford algebra generated by T ∗mM on Sm. We
denote this Clifford multiplication bundle map by c : T ∗M ⊗ S → S. The Dirac
operator acting in S is defined by the composition of these two maps.

D/ M : C∞(S) ∇ // C∞(T ∗M ⊗ S) c // C∞(S)
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The Clifford linear Dirac operator is that obtained by choosing the representation
∆ of Spin(n) to be the Clifford algebra Cn itself. The corresponding spinor bundle
S = Spin(M)×Spin(n)Cn then has the additional structure of a right Cn action on its
fibers. As a result, C∞(S) is a Z/2Z-graded topological vector space over R (Frechét
topology) and a right Cn-module. (Note that usual spinor representation taken has
roughly dimension 2n/2, whereas this representation has dimension 2n and so is
much larger.) The upshot is the that corresponding Dirac operator D/ M : C∞(S) →
C∞(S) for this spinor bundle S is right Cn-linear. In particular, the eigenspaces of
D/M are finite dimensional modules over Cn.

Let S denote the Clifford linear spinor bundle of M and write S∆ for the bundle
of spinors that depends on the choice of representation ∆. Note that no information
is lost by considering the Clifford linear Dirac operator, since we can always recover
S∆ from S by tensoring with ∆ over Cn on the right.

(Spin(M)×Spin(n) Cn)⊗Cn
∆ = Spin(M)×Spin(n) ∆

Via this process the Clifford linear Dirac operator is converted to the corresponding
Dirac operator by D/ M 7→ D/ M ⊗ 1 = DM .

To finish today, let us just record the Clifford algebras up to isomorphism for
the first few n. By R, C, and H, we mean the real numbers, complex numbers, and
Hamiltonian quaternions, respectively. If R is a ring (algebra) then we denote by
R(n) the ring (algebra) of n× n matrices with entries in R.

n 0 1 2 3 4 5 6 7 8 9
H R(8)

Cn R C H ⊕ H(2) C(4) R(8) ⊕ R(16) C(16)
H R(8)

Given an orthonormal basis e1, . . . , en for Rn the set {ei1 . . . eik
|i1 < . . . < ik}

forms a basis of Cn over R, so dimR Cn = 2n. These algebras exhibit a type of 8-
fold periodicity, namely Cn+8 ' Cn(16) for each n, and this is linked to the 8-fold
periodicity in KO-theory.

12. The 1|1-nonlinear sigma model and KO

Let M be a Riemannian spin manifold of dimension n. Our goal today is to
describe the one dimensional supersymmetric non-linear σ-model of M , σ1(M), in
terms of the data which determines it as a 1|1-EFT of degree −n and show how it
is related to KO−n.

The functor σ1(M) is determined by the pair (V,D) where V is the space of
clifford linear spinors on M and D is the Cn-linear Dirac operator on M . Let S
denote the Cn-linear spinor bundle over M .

Let’s discuss these data for the case where M is a circle of length `. Since SO(1)
is the trivial group the bundle SO(M) → M is the trivial covering of S1 by itself.
The spin group is Spin(1) = {±1} and there are two possible spin structures, one is
the trivial covering of S1 by itself and the other is the Möbius covering. We call the
former the periodic spin structure and the latter the anti-periodic spin structure.
The Clifford algebra C1 is C as an algebra over R, so the Clifford linear spinor
bundle is S = Spin(M)×±1 C. As a bundle over C, this is a trivial bundle in both
cases, but as a direct sum of R sub-bundles it is trivial in the periodic case but
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non-trivial in the anti-periodic case. We have the following identifications.

C∞(S) =
{ {smooth f : R→ C : f(t + `) = f(t)} periodic case
{smooth f : R→ C : f(t + `) = −f(t)} anti-periodic case

For the Dirac operator, we need to compute the covariant derivative. The Levi-
Cevita connection on M is identified with the ordinary derivative with respect to the
coordinate t. The induced covariant derivative in S is also simply differentiation
with respect to t since the structure group of S in this case is discrete. In our
identifications, t is the arc-length coordinate on M , so dt is a unit vector in the
cotangent space at each point. Under Clifford multiplication, this is equivalent to
multiplication by i in C, so Df = idf

dt .
The eigenspinors on M are of the form

e2πikt/` for k ∈
{
Z periodic case
Z+ 1

2 anti-periodic case

with corresponding eigenvalue 2πk/`. So we see that the spectrum is discrete and
symmetric about zero in R. Furthermore, kerD = C in the periodic case and
kerD = {0} in the anti-periodic case.

Recall that KO0(X) denotes the Grothendieck group of isomorphism classes
of real vector bundles over X, technically a set of isomorphism classes of pairs
(E, F ) where E and F are vector bundles over X, modulo an equivalence rela-
tion. Similarly, KO0

c(X) denotes the real K-theory with compact support and is
a Grothendieck group formed from a set of triples (E,F, α) where E and F are as
before, but α : E → F is vector bundle map with compact support.8 This turns
out to be equivalent to KO0(X+).

Recall that Cn denotes the Clifford algebra of Rn. Let M(Cn) denote the
Grothendieck group of isomorphism classes of Z/2Z-graded Cn-modules. Via the
inclusion ι : Cn → Cn+1 there is an induced map ι∗ : M(Cn+1) → M(Cn). The
following theorem is a beautiful result and the paper [ABS] is a classic work in the
subject of K-theory.

Theorem 12.1 (Atiyah-Bott-Shapiro). M(Cn)/ι∗M(Cn+1) ' KO−n

Recall that KO−n ' K̃O(Sn) = KO0
c(Rn) via the suspension isomorphism.

Atiyah, Bott, and Shapiro defined a map M(Cn) → KO0
c(Rn) by sending a Cn-

module ∆ to the triple (Rn×∆even,Rn×∆odd, α : Rn×∆ev → Rn×∆odd), where
the first two factors are the trivial bundles over Rn and the bundle map α is defined
by (v, λ) 7→ (v, v · λ) using Clifford multiplication. Note that v · v · λ = ‖v‖2λ, so α
fails to be an isomorphism only at v = 0 ∈ Rn. This map is a homomorphism of
abelian groups.

It is a fact, which we will state without proof, that the ABS map is compatible
with multiplication given by tensor products in KO-theory. The graded tensor
product Cn ⊗ Cm is isomorphic to Cm+n. In fact, all finite dimensional Clifford
algebras are isomorphic to graded tensor powers of C1. Given M ∈ M(Cm) and
N ∈M(Cn) one can form N ⊗R M and obtain a Cm+n-module.9

8The support of a vector bundle map α : E → F is the closure of the set of all x ∈ X where α
fails to be an isomorphism on the fiber.

9N.B. The action of Cn⊗Cm on N⊗M is described by the map (Cn⊗Cm)⊗(N⊗M) → (N⊗M),

(c⊗ d)⊗ (n⊗m) 7→ (−1)|d||n|cn⊗ dm.
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Recall that as a ring

KO−∗ ' Z[η, ω, µ, µ−1]/(2η, η3, ηω, ω2 − 4µ)

where the generators η, ω, and µ have degrees −1, −4, and −8 respectively. Recall
that C1 = C, C4 = H(2), and C8 = R(16). Let us note that the Z/2Z-decomposition
of both C4 = H(2) and C8 = R(16) into even and odd parts is the decomposition
into two by two block-diagonal and block-off-diagonal matrices. Corresponding to
each of the generators of KO−∗ is then an equivalence class of modules over Cn.
The table below gives representatives for these classes associated to the generators
via the ABS map.

KO−n generator M(Cn)/ι∗M(Cn+1)
η C = R⊕ iR
ω H2 = H⊕H
µ R16 = R8 ⊕ R8

The relations in KO−∗ can be seen algebraically. For example, 2η corresponds
to C⊕C which can be identified as a Z/2Z-graded algebra with H. So it certainly
extends over C2 = H. Thus 2η corresponds to 0.

Now, let us define a map ψ : 1|1-EFT−n[pt] →M(Cn)/ι∗M(Cn+1). Recall the
assertion that a 1|1-EFT of degree −n is determined the data of a right Cn-module
V together with a Cn-linear odd operator D. To this pair we will associate the
Cn-module ker(D). Of course, we now need to check that this assignment descends
to concordance classes in the domain and to equivalence classes of modules in the
range.

Proposition 12.2. ψ is well-defined.

Proof. Let spec(D) denote the spectrum of D. Recall that this is assumed to be
discrete in C. Given an eigenvalue λ ∈ spec(D), let Eλ denote the eigenspace in
V associated to λ. To prove the proposition, we will first establish the following
claims.

i) Eλ is a Cn-module (but not a graded Cn-module unless λ = 0).
ii) Eλ ⊕ E−λ is a Z/2Z-graded Cn-module.
iii) For λ 6= 0, the Cn-module structure on Eλ⊕E−λ extends to a Cn+1-module

structure.
Claim i) is clear. To establish ii), we need to show that Eλ⊕E−λ is invariant under
the grading involution ε. Let v ∈ Eλ, then Dεv = −εDv = −λεv since D is an odd
operator. Thus εv ∈ E−λ.

Claim iii) is a bit more subtle. To show that the Cn-module structure extends,
it suffices to show how to define the Clifford action of the basis element en+1 of
Rn+1. Set

en+1.v =
εD

|λ| v.

Then

e2
n+1 =

εDεD

|λ|2 =
−ε2D2

|λ|2 = −|λ|
2

|λ|2 = −1

on Eλ and

en+1ε =
εD

|λ|2 ε =
−ε2D

|λ| = −εen+1.
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Finally, since D is right Clifford linear, we have

en+1ei =
εD · ei

|λ| =
εeiD

|λ| = −eien+1.

So we have extracted an element ofM(Cn)/ι∗M(Cn+1) from our 1|1-EFT of degree
−n. Note that it was essential that D was an odd operator.

Next we ask the question: what happens when we deform the operator D? Recall
that one can think of concordant 1|1-EFT’s as being connected by a one parameter
family of 1|1-EFT’s and each element of the family is determined by a pair (V,D)
where D is an odd operator. Tracking the movement of the eigenvalues of D as
we move through the family, we see that kerD is not invariant under deformation,
since some eigenvalues may go to zero. But, the spectrum of D is symmetric about
the origin so E0 can only be replaced by E0 ⊕ Eλ ⊕ E−λ where λ → 0. But by
claim iii) above, Eλ ⊕ E−λ is a module over Cn+1, so this change is accounted for
by ι∗M(Cn+1). Hence deformation does not change [kerD]. ¤

13. The Â-genus as a partition function

Riemannian Spin Manifolds
α

))SSSSSSSSSSSSSSS
σ1

ttiiiiiiiiiiiiiiii

1|1-EFT−n[pt]
ψ // M(Cn)/ι∗M(Cn+1) oo ABS // KO−n

Last time we constructed a map ψ from concordance classes of 1|1-EFT’s of
degree −n to KO−n using the Atiyah-Bott-Shapiro description of KO−∗. This map
is, in fact, an isomorphism but since we have not yet properly defined a 1|1-EFT
of degree −n, we cannot yet discuss the proof.

Given a Riemannian spin manifold of dimension n, we can construct the 1|1-
dimensional non-linear sigma model of M , the quantum mechanics of a super par-
ticle moving in M , and obtain a 1|1-EFT of degree −n. On the other hand, we
can compute the Atiyah invariant α(M) and obtain an element of KO−n. The
above diagram commutes by the Clifford linear version of the Atiyah-Singer-Index
theorem. Let us remark that the middle line of the diagram can be interpreted for
all n ∈ Z, not just for n ≥ 0. The Atiyah invariant is surjective for n ≥ 0.

As an example, let’s consider again the circle M = S1 with length `. Let V
denote the Clifford linear spinors on M and let D be the Clifford linear Dirac
operator. Recall that there are two possible spin structures, the periodic case and
the anti-periodic case, and kerD is trivial in the anti-periodic case and equal to
C = C1 in the periodic case. The map ψ associates to the pair (V,D) the class
[kerD] ∈ KO−1 = Z/2Z. This class is trivial in the anti-periodic case and hits the
generator η in the periodic case.

Note that in this example everything is multiplicative. If M = S1×S1, with the
period spin structure on each factor, then ψ(σ1(M)) goes to η2 as does the Atiyah
invariant. The generator ω is hit by the K3 surface since its Â-genus is 2. Dominic
Joyce constructed an example of a Spin(7)-manifold with Â(M) = 1 and its Atiyah
invariant is the generator µ.

Now we would like to consider the information retained by the partition function.
We will define the partition function of a 1|1-EFT of degree n by first showing how
to reduce to a 1|1-EFT of degree 0 and then evaluating this reduction on circles.
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To reduce to a degree 0 EFT, we make a choice of a graded Cn module ∆ and then
tensor over Cn.

[V, D]
ψ //

⊗Cn

²²

[kerD] ∈ KO−n

⊗Cn

²²
[V ⊗Cn

∆, D ⊗ id] // M(C0)/ι∗M(C1) = KO0 = Z

Recall also that given E ∈ 1|1-EFT, we can obtain E ∈ 1-EFT.

Definition 13.1. The partition function of E ∈ 1|1-EFT is the function ZE : R>0 →
C obtained by evaluating E on the circle of length ` ∈ R>0, viewed as a morphism
from the empty set to itself in the Euclidean bordism category.

If E is determined by the pair (V,D), the E(S1
` ) is multiplication on C by the

number str (e−t`D2
) = E(S1

` ) =: ZE(`).

Proposition 13.2. For a given E ∈ 1|1-EFT, the partition function ZE is a
constant integer valued function on R>0.

Proof. Let spec(D2) denote the set of eigenvalues λ of D2 and for each eigenvalue
λ, let Eλ denote the corresponding eigenspace. Then

str (e−`D2
) =

∑

λ∈spec(D2)

e−`λsdim (Eλ)

where sdim (Eλ) = dim(Eev
λ ) − dim(Eodd

λ ) is the super dimension of the Z/2Z-
graded vector space Eλ. The operator D interchanges Eev

λ and Eodd
λ because it is

an odd operator and furthermore, it is an isomorphism if λ 6= 0. This implies that
sdim (Eλ) = 0 unless λ = 0. Hence str (e−`D2

) = sdim (ker(D2)) = sdim (kerD) ∈
Z independent of `. ¤

The point is that the partition function ZE forgets the torsion information in
the concordance classes of 1|1-EFT’s and produces an integer, much the same way
that the Â-genus forgets the torsion information in the Atiyah invariant.

Now we would like to switch gears a little bit and head back in the direction
of topological modular forms. First we will discuss modular forms and partition
functions of field theories.

Let E be a 2-CFT (recall that when we do not specify the degree, we mean
degree zero). Then E is a functor E : 2-CB → TV. Viewing a closed 2 surface
Σ with a conformal structure as a conformal bordism from the empty set to itself,
E(Σ) ∈ Hom(E(∅), E(∅)) = Hom(C,C) = C is multiplication by a complex number.

Recall that we defined the partition function ZE : h → C by assigning to τ ∈ h
the complex number E(C/Λτ ) where Λτ is the lattice Z+ τZ in C. Two such tori
C/Λτ and C/Λτ ′ are conformally equivalent if τ and τ ′ belong to the same orbit
under the action of SL(2,Z) on h by linear fractional transformations. This implies
that ZE for E ∈ 2-CFT is a modular function, i.e., it is a function on h which
transforms under the action of SL(2,Z) as a modular form of weight zero.

It is important to note that we considered only genus 1 bordisms from the empty
set to itself when considering the partition function. More generally, one could
produce a function on Teichmüller space which is invariant under the action of the
mapping class group. We restrict our attention to genus one surfaces because we
are interested in topological modular forms which have to do with elliptic curves.



36 STEPHAN STOLZ (NOTES BY ARLO CAINE)

14. Functions transforming as modular forms

Recall that E ∈ 2-CFT is a functor E : 2-CB → TV from the conformal bordism
category to TV. If Σ is a closed 2-manifold with orientation and conformal structure
(equivalently, Σ is a Riemann surface) then Σ can be viewed as a conformal bordism
from the empty set to itself and thus E(Σ) is a complex number. The partition
function ZE : h → C is defined by the values of E on Σ = C/Λτ where Λτ = Z+ τZ
for τ ∈ h and is a modular invariant function.

We have not yet defined field theories of non-zero degree, but for E ∈ 2-CFT2k,
E(Σ) ∈ Det⊗k

Σ for each k ∈ Z, where DetΣ is a certain complex line depending on
Σ which we will now define. Let Σ be a complex curve. The complex structure
on Σ induces an almost complex structure in T ∗Σ, i.e., a bundle endomorphism
which squares to minus −1. The complexified bundle T ∗Σ ⊗R C splits as a direct
sum of holomorphic line bundles T ∗1,0Σ and T ∗0,1Σ, the eigenbundles of the almost
complex structure corresponding to i and −i respectively. We denote by Ω1

hol the
holomorphic sections of T ∗1,0Σ, and refer to the elements as holomorphic 1-forms
on Σ.

For Σ = C/Λτ , we can identify the elements of Ω1
hol(Σ) with holomorphic 1-forms

on C of the form f(z) dz where f is holomorphic on C and periodic with respect to
the lattice Λτ . Since any such function is bounded, we obtain by Liouville’s theorem
that f is necessarily constant and hence Ω1

hol(C/Λτ ) = C. In general Ω1
hol(Σ) is a

finite dimensional vector space over C.

Definition 14.1. Let Σ be a closed Riemann surface. The complex line

DetΣ :=
∧top(Ω1

hol(Σ)∨)

is called the determinant line of Σ.

If k = −n is a negative integer, then we define Det⊗k
Σ := (Det∨Σ)⊗n.

Proposition 14.2. If F : Σ → Σ′ is a conformal equivalence, then we obtain in-
duced isomorphisms

Ω1
hol(Σ) Ω1

hol(Σ
′)F∗oo and Det⊗k

Σ

F∗ // Det⊗k
Σ′ .

We will require the following property of our functors E:
(14.1)

Σ → Σ′ a conformal equivalence ⇒ E(Σ) 7→ E(Σ′) under this isomorphism.

Remark 14.3.
i) The determinant lines DetΣ for Σ = C/Λτ stitch together to form a holo-

morphic line bundle Det over h with Detτ = DetC/Λτ
. It is equivariant

with respect to the action of SL(2,Z). Unfortunately the moduli space
h/SL(2,Z) is not a manifold since there are two values of τ with non-trivial
finite stabilizers, so there is no vector bundle over the moduli space. Instead
we work equivariantly.

ii) There is a generalization of the determinant line to the Teichmüller space of
genus g curves. The mapping class group π0(Diff(Σg)) acts on Teichmüller
space and the quotient is the moduli space of genus g curves.

iii) If E is an assignment from genus one curves Σ to E(Σ) ∈ Det⊗k such
that property (14.1) holds, then we get a section Det⊗k → h by setting
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s(τ) = E(C/Λτ ). To get a smooth or holomorphic section we will need
further assumptions on E. We would like to classify all such assignments.

Proposition 14.4. The assignments Σ → E(Σ) ∈ Det⊗k such that (14.1) holds
are in bijection with the set of functions f : h → C which transform as a modular
form of weight −k.

Idea of proof. Let’s trivialize Det over h to read a section as a function of τ . We
define a map H1(C/Λτ ,Z) → Det|C/Λτ

= Ω1
hol(C/Λτ )∨ as follows. Note first that

H1(C/Λτ ,Z) = π(C/Λτ ) = Λτ . Given a loop γ ∈ π1(C/Λτ ) we define a linear
functional on holomorphic 1-forms ω by ω 7→ ∫

S1 γ∗ω. Under this map, 1 ∈ Λτ =
π1(C/Λτ ) maps to ξτ which is the functional sending dz → ∫

S1 γ∗dz = 1.
Let τ ∈ h and

A =
(

a b
c d

)
∈ SL(2,Z)

and set τ ′ = aτ+b
cτ+d . Define a diffeomorphism FA : C/Λτ ′ → C/Λτ by the assignment

[z] 7→ [(cτ + d)z]. Then (FA)∗ : DetC/Λτ′ → DetC/Λτ
sends ξτ ′ → (cτ + d)ξτ . To see

this, note that (FA)∗ maps dz to (cτ + d)dz. By dualizing, the claim is established.
Now E(C/Λτ ) = Ê(τ)ξ⊗k

τ ∈ Det⊗k
C/Λτ

. Assuming property (14.1), we want to

show that Ê(τ ′) = (cτ + d)−kÊ(τ) when τ ′ = Aτ . We compute

(FA)∗(E(C/Λτ ′)) = (FA)∗(Ê(τ ′)ξ⊗k
τ )

E(C/Λτ ) = Ê(τ ′)(FA)∗(ξ⊗k
τ )

Ê(τ)ξ⊗k
τ = Ê(τ ′)(cτ + d)kξ⊗k

τ

from which the claim follows. The left hand side of the first two lines are equivalent
by assumption of property (14.1). The equality of the right hand sides of the
last two lines follows from the previous claim and the rest of the equalities are
straightforward.

It is clear that each such an assignment determines such a function and also that
the construction can be easily reversed. Hence the correspondence is a bijection. ¤

15. Functions transforming as modular forms: Revisited

Let Σ be a smooth complex projective curve of genus 1.

Theorem 15.1. Σ is complex analytically isomorphic to C/Λτ where Λτ = Z+ τZ
for some τ ∈ h.

Thus, as a smooth manifold Σ is a two-dimensional torus. It is also an abelian
group and therefore a homogeneous space. The presentation as C/Λτ corresponds
to choosing a base point e ∈ Σ which corresponds to the unit element.

In this case, the determinant line is DetΣ = Ω1
hol(Σ)∨. We will write ωΣ for

Det∨Σ. The line ωΣ can be viewed in several useful ways, either as Ω1
hol(Σ), or as the

holomorphic differentials on C which are invariant under translation by elements of
Λτ , or as the holomorphic cotangent space at the unit element e.

We are interested in assignments of the form Σ 7→ ϕ(Σ) ∈ ω⊗k
Σ . These assign-

ments should be functorial, i.e., given a base point preserving complex analytic
isomorphism g : Σ′ → Σ (an isogeny in algebraic geometry language) the induced
map g∗ : ω⊗k

Σ′ → ω⊗k
Σ should send ϕ(Σ′) to ϕ(Σ). Recall from our previous dis-

cussions that assignments of this type are in bijection with functions f : h → C
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which transform as modular forms of weight k. These maps are not necessarily
holomorphic, smooth, or even continuous. How do we build in analytic properties
of f?

Now is a good time for a short digression on natural transformations. If C is a
category and C, C ′ ∈ C, write C(C,C ′) for the set of morphisms from C to C ′.

Definition 15.2. Let C and D be categories and suppose F : C → D and G : C → D
are functors. A natural transformation T , depicted

C
F

++

G

33⇓T D

is the assignment to each C ∈ C of a morphism in TC ∈ D(F (C), G(C)) such that
for each morphism f ∈ C(C, C ′) the following diagram commutes

F (C)

F (f)

²²

TC // G(C)

G(f)

²²
F (c′)

TC′ // G(C ′).

With this notion, we can discuss the category Fun(C,D) whose objects are func-
tors and whose morphisms are natural transformations between them.

Definition 15.3. Two categories C and D are equivalent if and only if there exists
F ∈ Fun(C,D) and H ∈ Fun(C,D) such that F ◦ H and H ◦ F are objects in
Fun(D,D) and Fun(C, C) which are isomorphic to the identity, respectively.

Proposition 15.4. F ∈ Fun(C,D) is a equivalence of categories if and only if
(1) F induces a bijection between isomorphism classes of objects in C and D,

and
(2) for each C,C ′ ∈ C, F : C(C, C ′) → D(F (C), F (C ′)) is a bijection.

There is a close relationship between this language of functors, natural trans-
formations, and equivalences of categories, and that of maps, homotopies, and
homotopy equivalences. The correspondence is obtained by taking the classifying
space of a category.

Let Tori denote the groupoid whose objects are pointed complex tori and whose
morphisms are base point preserving complex analytic isomorphisms. Let VectC
denote the category whose objects are complex vector spaces and whose morphisms
are C-linear maps. We will define ω⊗k ∈ Fun(Tori,VectC) by the assignment Σ 7→
ω⊗k

Σ . Finally, let C ∈ Fun(Tori,VectC) denote the constant functor which assigns
to every object C and to every isomorphism the identity map on C. Then the maps
ϕ in which we are interested are the natural transformations

(15.1) Tori
C

,,

ω⊗k

22⇓ ϕ VectC.

Note that if G : Σ′ → Σ is an isomorphism of curves then G∗ : ω⊗k
Σ′ → ω⊗k

Σ is an
isomorphism.

Suppose ϕ is such a natural transformation, then for each Σ ∈ Tori we get a
linear map ϕ(Σ): c(Σ) → ω⊗k

Σ . Since this map is determined by the image of
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1 ∈ C, this corresponds to selecting an element of the line ω⊗k
Σ . Furthermore, if

G : Σ′ → Σ is an isomorphism of curves then the isomorphism G∗ : ω⊗k
Σ′ → ω⊗k

Σ

carries ϕ(Σ′) to ϕ(Σ).

Corollary 15.5. We have a bijection between the set of natural transformations ϕ
in (15.1) and functions f : h → C satisfying the transformation rule of a modular
form of weight −k.

How is the category Tori related to h and the action of SL(2,Z)? There is a
general construction which allows one to view a set with a group action, such as
h with the action of SL(2,Z), as a groupoid called the transport groupoid. Given
a set X with an action G ×X → X by a group G, we define a groupoid X/G by
declaring the objects to be the elements of X and given x, y ∈ X we define the set
of morphisms as X/G(x, y) = {g ∈ G|gx = y}. Composition of morphisms is then
given by multiplication in G.

Lemma 15.6. The transport groupoid h/SL(2,Z) is equivalent as a category to
Tori.

Proof. An object in h/SL(2,Z) is a point τ in the upper half-plane. We define a
functor h/SL(2,Z) → Tori by the assignment τ 7→ C/Λτ on objects and, given a
A ∈ SL(2,Z) determining the morphism τ 7→ τ ′ = Aτ in the transport groupoid, we
assign the isomorphism of curves A∗ : C/Λτ → C/Λτ ′ given by [z] 7→ [(cτ + d)−1z].
This functor is bijective on isomorphism classes of objects and gives an equivalence
of categories. ¤

The real question at hand is how we will build in the analytic properties of these
natural transformations. The idea, which will appear frequently in these lectures,
is to work in families.

Let Torihol fam denote the category of holomorphic families of tori, i.e., the ob-
jects of this category are holomorphic fiber bundles whose fibers are tori, together
with a holomorphic section of this bundle which selects a base point in each fiber.
A morphism in this category is a commutative diagram

Σ′
f̂ //

p′

²²

Σ

p

²²
S′

f //

s′

II

S

s

VV

where f̂ is a fiberwise isomorphism of Tori. Analogously, we let Vecthol fam
C denote

the category of holomorphic vector bundles.

Remark 15.7. Restricting to fiber bundles throws out the possibility of degeneration
of the fibers to singular curves. Perhaps it is better to work in the world of algebraic
geometry with flat morphisms.

With these family versions, we now want to systematically enhance our previous
discussion. We define the constant functor C : Torihol fam → Vecthol fam

C which
assigns to the holomorphic torus bundle over S the trivial line bundle over S. By
ω⊗k we now denote the functor

(Σ
p

// S)
stt 7→ s∗(T (Σ/S)) // S
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where T (Σ/S) denotes the complex tangent space of Σ over S, i.e., ker p∗ over C,
the vertical part of TΣ⊗ C.

Proposition 15.8. There is a bijection between natural transformations

Torihol fam

C --

ω⊗k

11⇓ ϕ Vecthol fam
C

and holomorphic functions f : h → C which transform as modular functions of
weight k.

Proof. Suppose ϕ is a natural transformation. Consider the “universal torus family
over h,” Σ = (h×C)/Z2 → h, the torus bundle over h whose fiber above τ is C/Λτ .
The group Z2 acts on h×C in the obvious way, (τ, z) · (m, n) 7→ (τ, z + m · 1 + nτ).

For this object Σ ∈ Torihol fam, the bundle ω⊗k(Σ) is trivialized as h × C by
(τ, 1) 7→ (dz)⊗k. Thus

c(Σ) = h× C

%%JJJJJJJJJJJ
ϕ(Σ) // ω⊗k(Σ) = h× C

xxrrrrrrrrrrrr

h

ϕ(Σ) is a bundle map h×C→ h×C and thus can be identified with a holomorphic
function on h. This assignment turns out to be bijective. ¤

A final question to ask is whether or not we can pin down the behavior at i∞.
This is for the moment unclear. What about integrality of the modular functions?
More on this later.

16. Vector bundles over categories

The goal for today is to develop some language that we will need to pin down
the properties of the natural transformations which correspond to integral modular
forms.

Let ManC denote the category of complex manifolds and holomorphic maps
between them. The first thing to note is that there are forgetful functors

Torihol fam

%%KKKKKKKKKK Vecthol fam
C

yyrrrrrrrrrr

ManC

which return the base space of the corresponding bundle. What properties do these
functors have?
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Definition 16.1. Let ρ : C → S be a functor, then f ∈ C(c, d) is said to be cartesian
if for each b ∈ C and morphisms h ∈ C(b, d), g ∈ S(ρ(b), ρ(d)) making the diagram

b
h

$$

ρ

²²

∃!g

""
ρ(b)

g

!!DD
DD

DD
DD

c
f //

ρ

²²

d

ρ

²²
ρ(c)

f // ρ(d)

commute, there exists a unique g ∈ C(b, c) making the diagram commute.

It is important to note that the definition of cartesian morphism depends strongly
on the functor ρ. For example, let C be the category of vector bundles and let S be
the category of topological spaces. Let ρ be the forgetful functor from C to S which
returns the base space of the given bundle. A morphism in C is a commutative
diagram

E
f //

²²

E′

²²
S

f // S′

where f is linear on the fibers. If f is a fiber-wise isomorphism, then we have
the following universal property: Given such a commutative diagram and a bundle
F → R with a map g : R → S and a fiber-wise isomorphism h : F → E′ covering
f ◦ g, there exists a unique fiber-wise isomorphism g : F → E making the diagram

F
h

""²²

∃!g

ÂÂ
R

g

ÂÂ?
??

??
??

? E
f //

²²

E′

²²
S

f // S′

commute. So the cartesian morphisms in the category of vector bundles with respect
to the functor ρ are the fiber-wise isomorphisms. Similarly, the cartesian morphisms
in Torihol fam are the bundle maps which are fiber-wise biholomorphisms of tori.

Definition 16.2. A functor ρ : C → S is a Grothendieck fibration if and only if for
each f ∈ S(S, S′) and E′ ∈ C with ρ(E′) = S′ there exists a cartesian morphism
f ∈ C(E, E′) making the diagram

E
f //

ρ

²²

E′

ρ

²²
S

f // S′

commute.
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An idea to remember is that Grothendieck fibrations encode pull-backs. Some
examples are the forgetful functors from vector bundles to topological spaces, holo-
morphic vector bundles to complex manifolds, Torihol fam to ManC.

Roughly speaking, a Grothendieck fibration C → S is called a stack if you can
“glue objects in C.” For example, the category of vector bundles over topological
spaces is a stack. To develop this further one needs a categorical generalization of
open covers. This is the data in a Grothendieck topology.

Definition 16.3. A vector bundle over Torihol fam is a functor F : Torihol fam →
Vecthol fam

C such that
i) F commutes with the forgetful functors to ManC,

Torihol fam F //

%%KKKKKKKKKK Vecthol fam
C

yyrrrrrrrrrr

ManC
and

ii) F carries cartesian morphisms to cartesian morphisms.

Another way to think about this definition is that F gives a functorial way to
make a holomorphic vector bundle over S out of a holomorphic family of tori over
S. Let C : Torihol fam → Vecthol fam

C denote the constant functor which assigns to
each holomorphic torus bundle over S, the trivial line bundle over S.

Definition 16.4. A section ϕ of a vector bundle F over Torihol fam is a natural
transformation ϕ : C ⇒ F ,

Torihol fam

C --

F

11⇓ ϕ Vecthol fam
C .

In order to head towards a geometric viewpoint on integral modular forms, we
now systematically replace analytic categories with arithmetic categories. The cat-
egory ManC is replaced with the category of schemes over SpecZ. The category
Torihol fam is replaced by the category whose objects are flat families of elliptic
curves over schemes over SpecZ. And Vecthol fam

C is replaced with the category of
locally free coherent sheaves of OS-modules where S is a scheme over SpecZ.

Briefly, here is what we need to know about schemes. Let R be a commu-
tative ring10. By Spec R we denote the set of prime ideals in R equipped with
the Zariski topology. A basis of open sets for this topology are the sets Dt =
{prime ideals p : t 6∈ p} for each t ∈ R. Over this topological space is a sheaf
OSpec R whose value on the open set Dt the localization of R at t. The data
(Spec R,OSpec R) is called an affine scheme.

Definition 16.5. A scheme is a pair (X,OX) where X is a topological space and
OX is a sheaf such that (X,OX) is locally isomorphic to (Spec R,OSpec (R)) for
some R.

Definition 16.6. An elliptic curve over a base scheme S is a morphism of schemes
ρ : E → S, smooth and proper, having genus 1 curves as fibers, together with a
section s : S → E of ρ.

10We will always assume that rings have 1.
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As discussed in [KM] and [D], one can form a category E`` of elliptic curves
over schemes S along with two functors ρ : E`` → Schemes and e : Schemes → E``,
the first being the forgetful functor which returns the base scheme and the second
a section of ρ, generalizing the base point selection section. The functor ρ is a
Grothendieck fibration. When Schemes is equipped with the étale topology, then

E``
ρ // Schemes

can be interpreted as a stack.
Over this stack, we will consider a line bundle ω and its tensor powers. Of course,

this needs a categorical definition. Here ω is a functor making the diagram

E``
ω //

ρ
$$JJJJJJJJJ LFSheaves

wwppppppppppp

Schemes

commute. Given E → S, an elliptic curve over S, we define ω(E → S) by
e∗(T ∗(E/S)) where T ∗(E/S) is our notation for the cotangent space of E over
S. Each point in the image of e is smooth, so there is a notion of tangent space
and its dual at that point.

Next time we will define sections of ω⊗k as natural transformations between
certain functors and try to indicate why there is a correspondence between sections
of ω⊗k and integral modular forms. The fact that the moduli space of elliptic
curves has a compactification which includes only nodal curves (Deligne-Mumford
compactification) is what leads to the q-series of the modular form having no pole
at zero. The integrality enters through the fact that we are considering all schemes.
Since Z maps to every ring, considering only results that work over all rings after
base change is where the integrality of the q-series enters in.

17. Weierstrass curves and the moduli stack M
Today’s goal is to give a geometric description of integral modular forms so that

later we can extend to the description of topological modular forms. Recall that we
established a bijection between holomorphic functions f : h → C which transform
as modular form of weight k and natural transformations ϕ between the constant
functor C and the functor ω⊗k between Torihol fam and Vecthol fam

C .
Since we are heading in the direction of algebraic geometry, we now adopt the

usual practice of intentionally confusing vector bundles with their sheaf of sections.
Recall that an object in Torihol fam is a holomorphic fiber bundle ρ : E → S whose
fibers are complex elliptic curves together with a section e : S → E selecting a base
point in each fiber. The functor ω assigns to such an object a certain complex line
bundle over S, ω(E), whose fiber over s ∈ S is the sheaf of invariant differentials
on E|s, i.e., ω(E) = e∗(Ω1

E/S).
Given a lattice Λ ⊂ C, how can we describe C/Λ as a curve in CP2? It is the zero

locus of a homogeneous polynomial. What is its degree? This question is answered
by the degree-genus formula. Here is a topologist’s version of the proof.

Proposition 17.1 (Degree-Genus Formula). Let f ∈ C[z0, z1, z2] be homogeneous
of degree d, set

Xd = {[z0 : z1 : z2] : f(z0, z1, z2) = 0},
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and assume that Xd is a smooth irreducible subvariety of CP2. Then Xd is a smooth
curve of genus

g =
(d− 1)(d− 2)

2
.

Proof. The Euler characteristic χ(Xd) = 2 − 2g, where g is the genus, can be
computed by evaluating the first Chern class c1(TXd) on the fundamental class
[Xd].

Over CP2 there is a natural line bundle

H = {(L, v) : L ∈ CP2, v ∈ L} ⊂ CP2 × C3 = C3.

In topology, this is referred to as the Hopf line bundle over projective space. In
algebraic geometry it is referred to as the tautological line bundle over projective
space. Let H⊥ denote the orthogonal complement of H in C3, then TCP2 '
Hom(H, H⊥).11 Note that the first Chern class remains unchanged if we add a
trivial bundle. Fortunately,

TCP2 ⊕ C ' Hom(H, H⊥)⊕Hom(H,H)

' Hom(H, H⊥ ⊕H)

' Hom(H,C3)
' 3H∨

so we can express the total Chern class of TCP2 easily in terms of the generator
x = c1(H∨) for H•(CP2) ' Z[x]/(x3).

Now, the homogeneous polynomial f determines a global section f̂ : CP2 →
(H∨)⊗d ' Hom(H⊗d,C) by sending [z0 : z1 : z2] to the form (z0, z1, z2)⊗d 7→
f(z0, z1, z2). The curve Xd is then the zero locus of this section in CP2. Our
assumption that Xd is smooth implies that f̂ is transverse to the zero section
which implies that the normal bundle ν(Xd,CP2) = (H∨)⊗d|Xd

.
Recall that the total Chern class is exponential. Hence, c(TXd) equals

c(TCP2|Xd
− ν) = c(TCP2)c(ν)−1

= c(3H∨)c((H∨)⊗d)−1.

In terms of the generator x, we have

c(TXd) = (1 + x)3(1 + dx)−1

= 1 + 3x− dx +O(x2)
= 1 + (3− d)x

where the terms of order higher order terms vanish because Xd has dimension 1.
The class [Xd] in H•(CP2) is d[CP1]. Thus

χ(Xd) = 〈c1(TXd), [Xd]〉
= 〈(3− d)x, d[CP1]〉

2− 2g = (3− d)d

and thus 2g = d2 − 3d + 2 = (d − 1)(d − 2). The degree-genus formula is then
obtained by dividing both sides by 2. ¤

11This a general fact about Grassmann manifolds which one can learn from [MS] for example.
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It follows from the degree-genus formula that the degree of a genus one curve can
only be 3. So, given our manifold C/Λτ , we need a method of producing a cubic
equation. This was worked out by Weierstrass and involves the following function.

Given a lattice Λ ⊂ C, we define the Weierstrass p-function ℘ : C → C by the
series

℘(z) =
1
z2

+
∑

ω∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
.

The function ℘(z) is a meromorphic function with poles at the points of Λ and is
periodic with respect to Λ. The following theorem gives us the relationship between
the tori C/Λτ and genus one curves in CP2.

Theorem 17.2 (Weierstrass). The map C/Λ → CP2 defined by [z] 7→ [℘(z) :
℘′(z) : 1] for [z] 6= 0 and [0] 7→ [0 : 1 : 0] is a holomorphic embedding of C/Λ into
CP2. The image of this embedding is a curve given by the equation

y2 = 4x3 − g2(Λ)x− g3(Λ)

where x = z0/z2 and y = z1/z2 where z2 6= 0 and

g2(Λ) = 60
∑

ω∈Λ\{0}
ω−4 and g3(Λ) = 140

∑

ω∈Λ\{0}
ω−6.

Let R be a commutative ring.

Definition 17.3. A Weierstrass curve over R is the curve in P2
R given by the

equation

(17.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a2, a3, a4, a6 ∈ R.

The curve is smooth if the discriminant ∆(a1, a2, a3, a4, a6) ∈ R×. For a given
ring R, the Weierstrass equation can be simplified to look like the form over C if
2, 3 ∈ R×. The equation in (17.1) is the most general equation of a cubic curve in
RP2 up to an automorphism of P2

R.
Isomorphisms between Weierstrass curves are given by projective linear trans-

formations of P2
R mapping one Weierstrass curve to another. Explicitly, such trans-

formations have the form

x 7→ λ−2x + r, y 7→ λ−1y + λ−1sx + t

for λ ∈ R× and r, s, t ∈ R.
Our goal now is the describe an analog M→ Aff of the Grothendieck fibration

Torihol fam → ManC. The objects of the category M are pairs (R, C) where R
is a commutative ring and C is a Weierstrass curve over R. By forgetting the
curve and remember R, or equivalently, the affine scheme Spec (R) we obtain a
map on objects between M and the category of affine schemes Aff. The morphisms
of M are generated by the isomorphisms of Weierstrass curves and base-change
morphisms. The Grothendieck fibration M → Aff is called the moduli stack of
elliptic curves because it has the stack property with respect to the Grothendieck
topology on Aff. We will not establish this here.

A morphism Spec (R′) → Spec (R) is equivalent to a ring homomorphism f : R →
R. Using fiber products, we can pull-back a Weierstrass curve C over R to a
Weierstrass curve C ′ over R′. In terms of equations, this amounts to replacing the
coefficients in R of the equation for C with their images under f : R → R′.
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Geometrically, we can think of an object in M also as a sheaf of Weierstrass
curves. Suppose (R, C) is an object ofM. Over the open set Dt = {prime ideals p|t 6∈
p}, t ∈ R, we obtain a curve E(Dt) over R[t−1] by changing coefficients under the
map R → R[1/t].

18. Integral modular forms as sections over M
Last time we discussed the stack M→ Aff of generalized smooth elliptic curves.

By M→ Aff we mean the same thing including singular degenerations of smooth
curves. The base of this Grothendieck fibration is the category of affine schemes,
or equivalently, the opposite of the category of commutative rings (with 1). Other
flavors of this construction are possible, allowing only certain kinds of singular
curves for example, or considering generalized elliptic curves over general schemes
instead of just affine schemes.

One should think of M→ Aff as analogous to Torihol fam → Cman. What do we
mean by a vector bundle over M? How do we think of a section of such a bundle?

Let Mod denote the category whose objects are pairs (R,M) where R is a com-
mutative ring and M is an R-module. Then there is a forgetful functor Mod → Aff
which sends (R,M) to Spec R. From the algebraic geometry perspective, vector
bundles over manifolds correspond to locally free coherent sheaves of modules over
the structure sheaf of the base scheme.

Definition 18.1. A sheaf E over M is a functor

M E //

!!CC
CC

CC
CC

Mod

||yyyyyyyy

Aff

making the above diagram commute, which carries cartesian morphisms to cartesian
morphisms. If E maps to free modules, then we say that that E is a vector bundle.

Let C : M → Mod denote the constant functor which assigns to every object
(R, C) in M the object (R,R) where the R in the second slot the ring viewed as a
module over itself.

Definition 18.2. A section of a vector bundle E : M → Mod is a natural trans-
formation

M
C

,,

E

22⇓ ϕ Mod.

Now we can describe the construction of a line bundle ω over M analogous to
that with the same name over Torihol fam. To an object X = (R, C) in M we
associate the rank one free R-module

ωX = R

[
dx

2y + a1x + a3

]
.

The key point is that isomorphisms of Weierstrass curves preserve the form of the
differential up to a multiplication by an invertible element of R. So an isomorphism
of curves X → X ′ gives rise to an interesting morphism ωX → ωX′ . Since the
morphisms of M are generated by isomorphisms of Weierstrass curves and base-
change morphisms, this indicates that ω : M → Mod is a non-trivial line bundle
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over M . Its kth tensor power ω⊗k is defined by assigning to X the free rank one
module ω⊗k

X .

Proposition 18.3. The sections of ω⊗k over M are in bijection with the integral
modular forms of weight k.

Before, we considered only smooth curves and thus could not account for the
analytic behavior of the associated modular form at i∞. But here, we work with
a compactification M of the moduli space which contains this point, and since a
section has a definite value there, it implies that the associated modular form has
no pole there. This is the idea anyway.

Topological Modular Forms. The slogan of the subject is “There exists a sheaf
Otmf of E∞-ring spectra over M such that a) π2kOtmf ' ω⊗k as a sheaf and b)
tmf = Γ(M,Otmf) as a spectrum.” Perhaps next time, we will describe how a
ring spectrum determines a multiplicative generalized cohomology theory and vice
versa.

The homotopy groups of the spectrum are π2ktmf = π2kΓ(M,Otmf). If the
global section functor was exact, one could commute the functors π2k and Γ and
obtain the sheaf of groups Γ(M, π2kOtmf) = Γ(M, ω⊗k) which is the abelian group
of integral modular forms of weight k. But, this is not quite the case since in-
teresting torsion information is lost in the process and so π2ktmf, which gives the
coefficients of the corresponding generalized cohomology theory, contains more than
just the integral modular forms of weight k. The deviation from exactness of Γ is
measured by sheaf cohomology. There exists a spectral sequence whose E2-term is
Hs(M, ω⊗k) which converges to π2k−stmf.

Of course, we now have a number of new terms to define and make sense of and
we will do this mostly next time. Let us first recall the wedge and smash product
of pointed topological spaces. Let X and Y be pointed topological spaces with base
points x and y, respectively. Then, the wedge product is defined by

X ∨ Y = (X q Y )/x ∼ y

and the usual example is that the wedge of two circles is the figure 8. The smash
product is defined by

X ∧ Y = (X × Y )/(x× Y ∪X × y)

and the typical example is Sn ∧ Sm ' Sn+m.

Definition 18.4 (Näıve Version). A spectrum E is a sequence En of pointed topo-
logical spaces and continuous maps of pointed spaces εm : S1 ∧ En → En+1.

The maps εm are alternatively defined as continuous pointed maps En → ΩEn+1

where the target is the based loop space of En+1. The space S1 ∧En for each n is
also called the reduced suspension of En.

19. The road to tmf: spectra and GCT’s

Theorem 19.1 (Hopkins-Miller, Lurie (Rough Version)). There exists a sheaf of
E∞-ring spectra Otmf over the stack M of (generalized) elliptic curves such that

a) π2kOtmf = ω⊗k (as sheaves of abelian groups)
b) π2k+1Otmf = 0

and other properties...
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Okay, what does all of that mean? Recall that an object of M is a pair (R,C)
where R is a commutative ring and C is a Weierstrass curve over Spec R together
with the forgetful map to Spec R. The sheaf Otmf assigns to this object a sheaf of
E∞-ring spectra over Spec R. By taking global sections of this sheaf, one obtains an
E∞-ring spectrum EC . The homotopy groups of this spectrum are π2kEC = ω⊗k,
where ω is a free rank one R-module, and π2k+1EC = 0.

Last time we discussed a näıve definition of a spectrum as a sequence of pointed
spaces Ek and pointed maps εk : S1 ∧ Ek → Ek+1. Every spectrum determines a
generalized homology theory

Top → AbGroups
X 7→ En(X)

for finite CW -complexes (e.g. compact manifolds), and a generalized cohomology
theory

Topop → AbGroups
X 7→ En(X)

defined by En(X) = πn(E ∧ X+) and En(X) = [X+, Sn ∧ E], respectively. Of
course, this notation also needs some explanation.

Definition 19.2. If E is a spectrum and X is a topological space then E ∧X+ is
again a spectrum with (E ∧X+)k = Ek ∧X+ and maps εk ∧ id.

There is a natural map induced between the homotopy groups πn+k(Ek) and
πn+k+1(En+1) for each k and n through the composition

πn+k(Ek) Σ // πn+k+1(S1 ∧ Ek)
(εk)∗ // πn+k+1(Ek+1)

of the suspension map followed by the map on homotopy induced by εk.

Definition 19.3. If E is a spectrum, then the homotopy groups of E are defined
by the direct limits

πn(E) = lim
→

(→ · · · → πn+k(Ek) → πn+k+1(Ek+1) → . . . )

for each n.

As bizarre as this looks, the computation of these limits is usually simpler than
straight homotopy. The taking of these limits is also essential to ensure that you
get a homology theory.

Definition 19.4. If E is spectrum and X is a pointed space, then the homotopy
classes of maps X → E is defined by

[X,E] := lim
→

(· · · → [Sk ∧X,Ek] → [Sk+1 ∧X,Ek] → . . . )

where in the sequence we consider homotopy classes of maps between pointed
spaces.

This also needs some explanation. From a map f : Sk ∧ X → Ek we obtain
a map id ∧ f : S1 ∧ Sk ∧ X → S1 ∧ Ek. Now S1 ∧ Sk = Sk+1 and and thus by
post-composition with εk we obtain a map Sk+1∧X → Ek. Note that, in the world
of spectra, the Freudenthal map [X, E] → [S1 ∧X,S1 ∧ E] is an isomorphism.

Eilenberg-Maclane spaces can be put together in a spectrum and the associated
cohomology theory is ordinary cohomology. Using the spectrum · · · → BU → U →
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BU → U → . . . involving the infinite unitary group and its classifying space, one
obtains K-theory.

Theorem 19.5 (Brown’s Representation Theorem). Every generalized cohomology
theory satisfying the Eilenberg-Steenrod axioms comes from a spectrum and this
spectrum is unique up to homotopy equivalence of spectra.

Given this result, it is easy in topology to not distinguish between spectra and
the GCT they determine or vice versa.

What properties does a spectrum E need to have in order that the associated
generalized cohomology theory E∗ has a (graded commutative) cup product? Well,
not surprisingly, such spectra are called ring spectra or, more commonly, E∞-ring
spectra.

To discuss these objects we will need a notion of maps between spectra µ : E ∧
E → E which should be associative and induce a graded commutative product in
cohomology. Of course, to do that, we would need to define the smash product
of spectra E ∧ E, but this is quite subtle and is best described using categorical
language which would take more time to develop than we have available here. The
common term is old terminology from before the invention of a suitable category
of spectra and smash products. In the new language, spectra form symmetric
monoidal category with respect to the smash product of spectra and an E∞-ring
spectrum is commutative monoidal object in that category. The old version was
quite a mess but was in some ways more concrete. The new version organizes the
details in a nicer way and hides the difficulties away in category theory. Using
the new version is like driving a well designed car whereas the old version was like
operating a jalopy.

Here is how one defines the cup product ∪ : Em(X) ⊗ En(X) → En+m(X)
knowing the multiplication map µ on E. A homogeneous element of the tensor
product is represented by a tensor product of classes represented by maps f : X+ →
Sm ∧ E and g : X+ → Sn ∧ E, respectively. The following diagram commutes.

X+ ∧X+
f∧g // Sm ∧ E ∧ Sn ∧ E

id∧µ

²²
X+

//

∆

OO

Sm+n ∧ E

We define the cup product of the classes of the maps f and g to be the class of the
map at the base of this diagram.

We mention this cup product structure because this is where the data of the
elliptic curve enters in tmf. Recall the general fact that E−n(pt) = πn(E) = En(pt)
for the generalized cohomology theory coming from a spectrum E. In tmf, we
obtain one spectrum EC for each pair (R, C) where R is a commutative ring and
C is a Weierstrass curve over R. The associated GCT has E−2k+1

C (pt) = 0 and
E−2k

C (pt) = ω⊗k
C for each k ∈ Z. Since ωC is a free R-module of rank one, we can

choose a generator uC ∈ ω−1
C ' E2(pt) and with this choice there is an isomorphism

of graded rings E∗
C(pt) ' R[uC , u−1

C ].
It is a fact that

E∗
C(CP∞) ' E∗

C [[x]]
where x ∈ E0

C(CP∞). The element x is the usual generator of the cohomology
of CP∞ in degree 2, but multiplied by u−1

C so as to be in degree 0. (Note, the
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coefficient ring E∗
C is graded which is why the generator of the power series ring

EC [[x]] can be taken in any degree.) A second fact that we will state is that

E∗
C(CP∞ × CP∞) ' E∗

C [[x, y]].

Both of these facts can be proven using the Atyiah-Hirzebruch spectral sequence.
The second isomorphism will help us to describe the cup product, but we will do
this next time.

20. tmf and elliptic cohomology

Recall that Otmf is a sheaf of E∞-ring spectra over M, the stack of (generalized)
elliptic curves. In more concrete terms, given a pair (R,C) where R is a commu-
tative ring and C is a Weierstrass curve over R, one can associate an E∞-ring
spectrum EC such that π2k+1EC = 0 and π2kEC = ω⊗k for each k ∈ Z. So

π∗EC ' ⊕k∈Zω⊗k ' R[uC , u−1
C ]

where uC ∈ ω = π2EC . The isomorphisms above are ring isomorphisms where
k ∈ Z in the direct sum corresponds to 2k in the argument of the homotopy functor.
(If you are unaccustomed to looking at expressions of this type, you might be thrown
by the fact that the left hand side contains π−17EC for example. Recall that the
homotopy groups of a spectrum are defined by limits so that while π−17 has no
definition for a topological space, it does for spectra.)

The key point we would like to make is that the dependence of this information
on the pair (R, C) is functorial. And, since we have a functorial way of producing
a multiplicative generalized cohomology theory from a ring spectrum, we have by
composition a functorial assignment (R,C) 7→ EC 7→ E∗

C(·). The fundamental
properties of these GCT’s are

i) E∗
C(pt) ' R[uC , u−1

C ] where the degree of uC is -2.
ii) The formal group law (FGL) of the GCT E∗

C(·) agrees with the FGL asso-
ciated to the elliptic curve C.

Multiplicative GCT’s satisfying these two properties are called elliptic cohomol-
ogy theories. In the subject of elliptic cohomology, there is a construction due
to Landweber which shows how to build a multiplicative generalized cohomology
theory E∗

C(·) associated to a pair (R, C). Associated to any GCT is a spectrum
defined up to homotopy. The hard work of Hopkins, et al, was to show that the
assignment from pairs (R,C) to spectra is indeed a functor (i.e., relevant diagrams
commute on the nose, rather than just up to homotopy) if one only allows isogenies
and base-changes as morphisms in the category of pairs (R, C).

Over C, all E∗
C(·)’s are direct sums of ordinary cohomology with a funny multi-

plication defined by the elliptic curve. Over other rings R, it is more complicated.
Now, property ii) of elliptic cohomology theories requires some explanation. Let

C be a Weierstrass curve over a commutative ring R and let E∗
C(·) be the associated

generalized cohomology theory. It is a fact that E∗
C(CP∞) ' E∗

C [[x]] where x is a
chosen element in E0

C(CP∞). (Recall that because E∗
C = E∗

C(pt) is graded, we can
choose the generator x in degree zero.)

Let us say that x′ ∈ E0
C(CP∞) is a generator12 if E∗

C [[x′]] → E∗
C(CP∞) is an

isomorphism. If x and x′ are generators, then x′ =
∑∞

i=0 aix
i ∈ R[[x]] and this

12This is ad hoc terminology.
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is an invertible expression with respect to substitution. In other words, the set of
generators is a torsor for (R[[x]], ·)×.

Given a generator x, we get classes x1, x2 ∈ E∗
C(CP∞ × CP∞) by pulling x

back to each factor. Via the Atiyah-Hirzebruch spectral sequence one obtains the
isomorphism E∗

C(CP∞ × CP∞) = E∗
C [[x1, x2]]. Now, there is a multiplication

map µ : CP∞ × CP∞ → CP∞, defined up to homotopy, which is commutative,
associative, and has a unit, all defined up to homotopy. If one thinks of points
in CP∞ as homogeneous polynomials then this corresponds to multiplication of
polynomials. Via homotopy theory one can think of the classifying map products
of the tensor powers of the Hopf line bundle. In any case, there is an induced map
in cohomology

E∗
C(CP∞ × CP∞)

OO

²²

E∗
C(CP∞)oo

OO

²²
E∗

C [[x1, x2]] E∗
C [[x]]oo

where the last map sends x to F (x1, x2) =
∑

i,j aijx
i
1x

j
2 where aij ∈ R since the

degrees of x, x1, and x2 are all zero. In other words, F is a formal power series in
the variables x1 and x2 (which thus depends on the choice of generator x).

Definition 20.1. A formal group law over a ring R is a formal power series
F (x, y) ∈ R[[x, y]] such that

(1) F (x, 0) = x = F (0, x) (unit property)
(2) F (x, y) = F (y, x) (commutativity)
(3) F (F (x, y), z) = F (x, F (y, z)). (associativity)

Properties 1,2,3 are satisfied by the power series F (x1, x2) determined by E∗
C(·).

Thus E∗
C(·) determines a formal group law over R.

It turns out that elliptic curves determine a formal group law as well. It is a fact
that if C is a Weierstrass curve over R then the smooth points of C as a subset of
P2

R have the structure of an abelian group. The group law can be given a simple
geometric description when the base ring is algebraically closed field k. Given two
points P and Q on C form the projective line L in P2

k passing through P and Q.
Any line in the projective plane must meet a cubic curve three times by Bezout’s
theorem, so the line L determines a third point R on the curve C. Then one forms
the line through this point and the marked point at infinity to get a third point on
the curve which is defined to be P + Q. This is depicted Figure 1.

The group determined by the smooth points of an elliptic curve is one of three
types depending on the type of singularity the curve has.

a) Cusp curve: e.g. y2 = x3. The smooth points form the additive group
Ga = (R, +).

b) Nodal curve: e.g. y2 = x2(x+1). The smooth points form the multiplicative
group Gm = (R,×).

c) Smooth curve: e.g. y2 = x(x2 − 1). The smooth points form a group as
described geometrically above.

One can express these group laws in terms of a local parameter z about the
marked point (the unit in the group). Expanding as a power series, one obtains
a formal group law associated to an elliptic curve. Of course, there are different
choices of local parameter, which lead to different power series representing the



52 STEPHAN STOLZ (NOTES BY ARLO CAINE)

P

Q
L

C

R

P + Q

∞

Figure 1. The law of addition on a smooth elliptic curve. The
figure shows the real points of the curve y2 = x(x2−1) in an affine
chart for CP2 and the lines used to determine the sum P + Q of
the points P and Q.

formal group law. However, give two such parameters z, z′ there is a formal re-
lation z′ = f(z) for some f ∈ R[[z]]. In kind, the ambiguity in the power series
representing the formal group law obtained from C is the same as the ambiguity in
the power series representing the formal group law obtained from E∗

C .

Remark 20.2 (Notetaker’s comment). One can see the geometry of the groups in
the case R = C quite nicely. In the smooth case, the curve is a Riemann surface
of genus 1. Let’s consider the curve which is given in affine coordinates by the
equation y2 = x(x− µ)(x + λ) where λ = µ = 1, i.e., y2 = x(x2 − 1). We consider
x 7→ x(x2−1) as map of the Riemann sphere and we attempt to compute y in terms
of x by taking the square root y = exp( 1

2 log(x(x2 − 1)). This involves choosing
a branch for the logarithm on the range of x(x2 − 1). If we choose to cut along
the non-negative real axis in the range, then we must remove the real intervals
[−1, 0] ∪ [1,∞] along the meridians in the Riemann sphere connecting 0 and ∞.
Making these cuts we obtain an annulus. The Riemann surface for y is obtained
by gluing two copies of this annulus to form a torus. The corresponding group is
C/Λτ .

Letting µ → 0 gives a nodal curve and this corresponds to contracting one of the
generating cycles in the torus to a point. Topologically, we obtain a sphere with
two points identified. Removing this singular point we see the multiplicative group
C∗ = Gm(C).
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distinct roots for cubic one double root triple root

C/Λτ C∗ C

π1 = Z2 π1 = Z π1 = 0

Figure 2. Real points of some elliptic curves over C, y2 = f(x)
where f(x) is a cubic polynomial. Also shown is the Riemann sur-
face associated to the smooth curve and its corresponding topolog-
ical degenerations, and the associated groups of smooth points.

Letting λ → 0 next contracts the remaining generator in homology to a point
and gives us the cusp curve. Topologically, we obtain a sphere. But, it is not a
smooth sphere, it is the tear-drop orbifold. Removing the lone singular point we
see the additive group C = Ga. See Figure 2.

Next time we will go on to the realm of field theories, but let’s make one final
remark. Brown and Petersen have illustrated the range of generalized cohomology
theories. At one end is ordinary cohomology which is the easiest to compute and
calculate with. At the other end is the very difficult world of stable cohomotopy.
In passing from one extreme to the other, one goes from ordinary cohomology
to K-theory to elliptic cohomology and onward. This has much the same feel as
increasing the bordism category dimension in field theories. Note that there as well,
the difficulty in construction climbs rapidly with with dimension of the morphisms
in the bordism category.

21. Monoidal categories and 2-categories

Let’s return to now to field theories. Earlier, we gave a rough definition of field
theories of various flavors TFT, CFT, and RFT.

Definition 21.1. (Rough) A d-dimensional Riemannian field theory (a d-RFT) is
a symmetric monoidal functor

E : d-RB → TV
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where the objects of d-RB are (d − 1)-dimensional closed manifolds and the mor-
phisms are Riemannian bordisms modulo isometries inducing the identity on each
end.

Today, we will review some terminology from category theory that we will need
in order to sharpen this definition. The first important notion is that of a symmet-
ric monoidal category. Familiar examples abound. In the category of topological
spaces, the disjoint union provides a monoidal structure and the empty set is the
monoidal unit, i.e., (Top,q, ∅) is a symmetric monoidal category. Alternatively,
(Top,×, pt) is a symmetric monoidal structure on the category Top. Similarly the
category of vector spaces over a field k is a symmetric monoidal category with
monoidal structure given by the tensor product and scalar field k as the monoidal
unit. If the monoidal structure was given by the direct sum, then the zero vector
space would be the monoidal unit.

The formal definition appears somewhat involved, but with the right point of
view, can seem quite natural. One needs a functor13 ⊗ : C×C → C and a unit object
1 ∈ C satisfying various properties which are categorical analogs of associativity and
identity properties. But in category theory, it is better to demand isomorphism
rather than equality in these properties and as such, the isomorphisms become
part of the data the definition.

Definition 21.2. A monoidal category is a triple (C,⊗, 1) where C is a category,
⊗ : C ×C → C is a functor (the monoidal product), 1 is an object of C (the monoidal
unit) together with natural isomorphisms αX,Y,Z : (X ⊗ Y ) ⊗ Z ' X ⊗ (Y ⊗ Z)
(called associators), and natural isomorphisms ρX : X⊗ 1 ' 1 and λX : 1⊗X → X
(left and right inverses, respectively) for each X,Y, Z ∈ C satisfying the following
coherence conditions.

i) For each W,X, Y, Z ∈ C the following pentagon diagram commutes. (Note
that we have abbreviated the object X ⊗ Y of C by (XY ).)

(21.1) ((WX)Y )⊗ Z
αW,X,Y ⊗idZ//

α(W X),Y,Z

²²

(W (XY ))⊗ Z
αW,(XY ),Z// W ⊗ ((XY )Z)

idW⊗αX,Y,Z

²²
(WX)⊗ (Y Z)

αW,X,(Y Z)
// W ⊗ (X(Y Z))

ii) For each X, Y ∈ C, the following diagram commutes.

(21.2) (X ⊗ 1)⊗ Y
αX,1,Y //

ρX⊗Y &&NNNNNNNNNNN
X ⊗ (1⊗ Y )

X⊗λYxxppppppppppp

X ⊗ Y

Thanks to foundational work of Mac Lane, these coherence conditions guarantee
that any diagram whose morphisms are built from α, λ, ρ, identities, and tensor
products will commute.

13The cartesian product of two categories C and D has objects which are pairs of objects, one
from C and one from D, and morphisms which are pairs of morphisms.
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Definition 21.3. Let (C,⊗, 1) be a monoidal category. A braiding on C is a
collection of natural isomorphisms

σX,Y : X ⊗ Y → Y ⊗X

one for each X,Y ∈ C, such that the following two diagrams commute for all
X, Y, Z ∈ C. (Note, again, that we have abbreviated the object X ⊗ Y of C by
(XY ).)
(21.3)

X ⊗ (Y Z)
σX,(Y Z)// (XY )⊗ Z

αY,Z,X

²²

(XY )⊗ Z
σ(XY ),Z//

αX,Y,Z

²²

Z ⊗ (XY )

(XY )⊗ Z

αX,Y,Z

OO

σX,Y ⊗idZ

²²

Y ⊗ (ZX) X ⊗ (Y Z)

idX⊗σY,Z

²²

(ZX)⊗ Y

αZ,X,Y

OO

(Y X)⊗ Z
αY,X,Z

// Y ⊗ (XZ)

idY ⊗σX,Z

OO

X ⊗ (ZY ) (XZ)⊗ Y
αX,Z,Y

oo

σX,Z⊗idY

OO

A monoidal category together with a braiding is a braided category.

For example, on the category of Z/2Z-graded vector spaces over a field we define a
braiding via the isomorphisms σX,Y : X⊗Y → Y⊗X determined by the assignments
x ⊗ y 7→ (−1)|x||y|y ⊗ x where |x| ∈ {0, 1} denotes the degree of a homogeneous
element x.

The next notion we need to discuss is that of an internal category which will
provide the right language for discussing bordism categories. This is a slightly more
sophisticated notion.

Definition 21.4. A (small) category (without units) consists of sets C0 (objects)
and C1 (morphisms) and maps s : C1 → C0 (source map) and t : C1 → C0 (target
map), c : C1 ×C0 C1 → C1 (law of composition)14 such that the following diagrams
commute.

i) (One can specify the source and target of a composition)

(21.4) C1

s

²²

C1 ×C0 C1
π2oo π1 //

c

²²

C1

t

²²
C0 C1

soo t // C0

ii) (Associativity)

(21.5) C1 ×C0 C1 ×C0 C1
c×id //

id×c

²²

C1 ×C0 C1

c

²²
C1 ×C0 C1

c // C1

To formulate a definition of a category with units in this way involves another
pair of diagrams that are easy to write down. Now, one can easily generalize this

14The use of the fiber product in the domain ensures that the source of the second map is the
target of the first.
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framework using the formal properties of these diagrams. Of course, that requires
being able to make sense of C1 ×C0 C1 in a general category.

Suppose that A is a category with pull-backs, i.e., for each diagram of the type
on the left

d

!!

¿¿

d

$$

ÂÂ

∃!

##
c

²²

Ã a×b c
f //

g

²²

c

²²
a // b a // b

there exists an object which we denote a×bc and morphisms f , and g such that there
exists a unique morphism d → a×b c making the diagram on the right commute.

Definition 21.5. A category C internal to A consists of objects C0, C1 ∈ A and
morphisms s, t : C1 → C0 and c : C1 ×C0 C1 → C1 such that the diagrams in (21.4)
and (21.5) commute.

A category with pull-backs is Cat, the category of categories. The objects of this
category are categories and the morphisms are functors between categories. (Note:
this is certainly not a small category!)

Let us consider the following objects of Cat. Let C0 be the category whose
objects are (d− 1)-dimensional closed manifolds (equipped with a Riemannian bi-
collar) which has, as morphisms, diffeomorphisms of (d− 1)-dimensional manifolds
(which extend to a isometry of the bi-collar.) (To be more careful, we will want to
think in terms of germs, i.e., identify when equivalent on a sub-collar.) Let C1 be
the category of d-dimensional Riemannian bordisms extending the bi-collars. The
objects of this category are triples, the source and target manifolds with bi-collars,
and the bordism itself.

Σ

Y1 Y0

This is a stronger notion of bordism because of extra data of the two bi-collars.
This is still not quite good enough, but we will deal with that later.

Now we must ask the question, do C0 and C1 form a category internal to Cat?
We define the source and target map on the triples making up the objects of C1 as

follows: s( Y1 Y0
Σoo ) = Y0 and t( Y1 Y0

Σoo ) = Y1. Composition

c : C1 ×C0 C1 → C1
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is defined by gluing along the common part.

Σ2

Σ1

Y2 Y1 Y0 = ∅

With these definitions, diagram (21.4) commutes on the nose, but diagram (21.5)
is only commutative up to a natural isomorphism. This gives rise to a natural
transformation T which is an isomorphism.

C1 ×C0 C1 ×C0 C1

id×c

²²

c×id // C1 ×C0 C1

²²
C1 ×C0 C1

//

T

08iiiiiiiiiiiiiiii

iiiiiiiiiiiiiiii
C1

Thus, the answer to the question is, unfortunately, no. We need to be able to include
the data of this natural transformation. Thus, we need to look at 2-categories.

Definition 21.6. A (strict) 2-category A consists of
a) a class of objects X,Y, Z, . . .,
b) for each pair of objects X, Y ∈ A, a category of morphisms A(X, Y ), and
c) functors

A(X, Y )×A(W,X) → A(W,Y )
which are associative (on the nose).

For example, Cat can also be regarded as a strict 2-category. The objects are
categories and the morphisms between objects are functors. But Fun(C,D) forms
a category whose objects are functors and whose morphisms are natural transfor-
mations between functors. Moreover, composition of functors is associative on the
nose, rather than just up to natural isomorphism.

22. Internal categories

There is a nice pictorial way of working with 2-categories. Recall that in a 2-
category, for each pair of objects, the morphisms between those objects form a
category. We will depict objects by capital Roman letters, morphisms between
objects by arrows labeled by lower case Roman letters, and morphisms between
morphisms by double arrows labeled with Greek letters.

X

f
))

g

⇓ α 55 Y

Here α is referred to as a 2-morphism.
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It is important to note that in a 2-category there are now two types of composi-
tions. First of all, given two objects X,Y ∈ A there is the composition in A(X,Y ),
which we will call vertical composition.

X
&&⇓ α

⇓ β
//88 Y

The second type of composition is that in the category A itself, which we will
call horizontal composition. This is a functor which acts on objects in the obvious
way.

Z Y
goo Y X

foo Ã Z X
g◦foo

On morphisms, composition is defined by concatenation.

Z Y
g

ii

g′

⇓ β
uu

Y X
f

ii

f ′

⇓ α
uu Ã Z X

g◦f
ii

g′◦f ′

⇓ β◦αuu

The vertical and horizontal compositions are compatible and the adjective strict
here means that horizontal composition is associative on the nose. (If it were only
associative up to 2-morphism, this would be a bi-category or weak 2-category).

Definition 22.1. A internal category C (without units) in a strict 2-category A
(which has pull-backs) consists of objects C0, C1 ∈ A (the objects and morphisms of
C), morphisms s, t : C1 → C0, c : C1×C0 C1 → C1 (source, target, and composition)
and a 2-morphism α (associator) such that:

i) the diagram

C1

t

²²

C1 ×C0 C1
π1oo π2 //

c

²²

C1

s

²²
C0 C1

too s // C0

commutes and where alpha is a natural transformation

C1 ×C0 C1 ×C0 C1

1×c

²²

c×1 // C1 ×C0 C1

c

²²
C1 ×C0 C1 c

//
px

α

08iiiiiiiiiiiiiii

iiiiiiiiiiiiiii
C1

ii) the pentagon identity holds for associators.

The point is that in the bordism category we can only guarantee that bordisms
glued in different orders are diffeomorphic rather than “the same.”

Definition 22.2. If C and D are categories internal to a strict 2-category A, then
a functor f : C → D is a triple f = (f0, f1, f2) which:

i) on objects is a morphism f : C0 → D0 in A “functor on objects,”
ii) on morphisms f1 : C1 → D1 is a “functor on morphisms” and
iii) a 2-morphism f2 in A
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subject to the following requirements. It is compatible with source and target maps,
i.e., this diagram

C0

f0

²²

C1

f

²²

soo t // C0

f0

²²
D0 D1

soo t // D0

commutes. It is compatible with composition,

C1 ×C0 C1

f1×f1

²²

c // C1

f1

²²
D1 ×D0 D1

f2

2:mmmmmmmmmmmmmm

mmmmmmmmmmmmmm
c

// D1

(plus a diagram expressing compatibility of f2 with associators in C and D).

Finally, we are ready to give a first definition of a d-RFT. Let SymCat denote
the strict 2-category of symmetric monoidal categories.

Definition 22.3. A d-dimensional Riemannian field theory is a functor d-RB →
TV of categories internal to the strict 2-category SymCat.

This is still a rough definition because we will need to think in families so we will
look internal to a more complicated 2-category involving categories Grothendieck
fibered over supermanifolds.

Definition 22.4. By TV we denote the category of Z/2Z-graded topological vector
spaces (locally convex and complete). By TV0 we denote the category whose objects
are Z/2Z-graded topological vector spaces over C, whose morphisms are linear
continuous isomorphisms, and which is equipped with the monoidal structure of the
graded tensor product with the projective topology. By TV1 we denote the category
whose objects are continuous linear maps T : V → W and whose morphisms are
commutative squares

V
T //

²²

W

²²
V ′ T ′ // W ′

whose vertical maps are isomorphisms. The symmetric monoidal structure is given
by the tensor product of maps.

V
T // W V ′ T ′ // W ′ Ã V ⊗ V ′ T⊗T ′ // W ⊗W ′

The source map s : TV1 → TV0 is a symmetric monoidal functor

s( V
T // W ) = V.

The target map is also a symmetric monoidal functor

t( V
T // W ) = W.

The composition map is c : TV1 ×TV0 TV1 → TV1 is simply composition of linear
maps.
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It is important to note that there is an asymmetry present in TV which we will
want to reflect in the domain bordism category. This is due to the fact that on
the dual of a topological vector space, one has many choices of topology and no
natural choice. There is an evaluation map ev : V ′ ⊗ V → C but there does not
exist a co-evaluation map C → V ′ ⊗ V for every V ∈ TV unless we restrict our
attention to finite dimensional vector spaces. It is imperative that we do not make
such a restriction, so we must live with this asymmetry. The domain category d-RB
should be defined in such a way as to reflect this. “Bordisms need to be read one
way in order to allow infinite dimensional vector spaces.”

23. d-RB as a category internal to SymCat

Last time we described how to view TV as a category internal to SymCat, the
strict 2-category of symmetric monoidal categories. By TV0 we mean the symmetric
monoidal category whose objects are Z/2Z-graded topological vector spaces with
the projective tensor product, and whose morphisms are isomorphisms of such
spaces. By TV1 we mean the symmetric monoidal category of continuous linear
maps between objects of TV0 together with the tensor product of such maps. As a
category internal to the strict 2-category SymCat, TV consists of TV0, TV1, plus
source and target functors and the composition functor.

Our rough definition of a Riemannian field theory was that of a functor d-RB →
TV. We will now make sense of d-RB as a category internal to SymCat. This,
unfortunately, will involve some gory details. So the reader should be warned that
pain is ahead.

Definition of d-RB. By d-RB we denote the category internal to SymCat defined
by the following data.
d-RB0 is a symmetric monoidal category defined as follows.

• Objects: The objects of d-RB0 are d-dimensional Riemannian manifolds Y
(called bi-collars) equipped with a decomposition Y = Y −qY cqY + as sets
where Y ± are open sub-manifolds of Y , Y c is a closed (d− 1)-dimensional
topological submanifold of Y (called the core of Y ) with Y c ⊂ closure(Y ±).

• Morphisms: Given two objects Y0 and Y1, a morphism of d-RB0 from Y0

to Y1 is a germ of an isometric embedding f : V0 → Y1 of an open tubular
neighborhood V0 of Y c

0 into Y1 such that f(Y c
0 ) = Y c

1 and f(V ±
0 ) ⊂ Y ±

1

where V ±
0 = V0 ∩ Y ±

0 .
• Symmetric Monoidal Structure: Disjoint Union.
• Monoidal unit: Empty set.

Here is a picture of an object Y = Y1 q Y2 q Y3 in 2-RB0.

Y1 =

Y c
1

Y −
1 Y +

1

Y2 =

Y −
2 Y +

2

Y c
2

Y3 =
Y −

3

Y +
3

Y c
3
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The pictures are meant to suggest the metric structure on each bi-collar by its
depicted embedding. Note that the core of Y1 is a smooth submanifold while the
cores of Y2 and Y3 are merely topological submanifolds. This is allowed. Also, we
do not require the bi-collar to have the topology of Y c × [0, 1] as is evident in the
case of Y2.

This category has an involution Y 7→ Y ∗. Given Y ∈ d-RB0, we define an object
Y ∗ ∈ d-RB1 by switching the labels of the plus and minus parts.

Y =

Y −
Y +

Y c

→ Y ∗ =

(Y ∗)+
(Y ∗)−

(Y ∗)c

d-RB1 is a symmetric monoidal category defined as follows.

• Objects: The objects of d-RB1 are triples ( Y1 Y0
Σoo ) (called a Rie-

mannian bordism from Y0 to Y1) consisting of the information: a Riemann-
ian manifold Σ, and smooth maps ik : Wk ⊂ Yk → Σ from an open neigh-
borhood Wk of Y c

k , for each k = 0, 1. These data satisfy the conditions:
i) the core of Σ, Σc := Σ \ (i1(W−

1 ) ∪ i0(W+
0 )) is compact,

ii) i1 : W1 ⊂ Y1 → Σ is an isometric embedding,
iii) i0|W+

0
: W+

0 → Σ is an isometric embedding,
iv) i0(W+

0 ) ∩ i1(W−
1 ) = ∅.

• Morphisms: isometries of Σ preserving the given data.
• Symmetric Monoidal Structure: Disjoint Union.
• Monoidal unit: Empty set.

Here is a picture of an object Y2 Y1
Σoo describing a bordism between the

objects Y1 and Y2 in d-RB1.
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Y2 =

Y c
2

Y c
1

Y1 =

Σc

Σ

i2 i1

i1(W+
1 )

i2(W−
2 )

W+
1

The difference between requirements ii) and iii) in the definition of the objects
of d-RB1 builds in an intrinsic asymmetry in d-RB. This is to reflect the inherent
defect in the category of vector spaces in that it does not admit a co-evaluation.

Note that the bordisms could be small enough that the bi-collars overlap. In fact,
the infinitely thin bordism gives an identity with respect to the law of composition.

The composition functor

d-RB1 ×d-RB0 d-RB1
c // d-RB1

is defined in a straightforward manner. To glue two bordisms

Y2 Y1
Σ′oo Y1 Y0

Σoo

one forms the bordism Σ′′ by first restricting so that i1 and i′1 have the same
domain. Then one forms

Σ′′ := Σ′ q (Σ \ i1(W−
1 ∪ Y c

1 ))/ ∼

where i′1(W
+
1 ) is identified with i1(W+

1 ).

Example 23.1. Here are two interesting bordisms present in d-RB1.
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i) The identity bordism from Y to itself.

Σ = Y =

id
id

Y Y

ii) The Evaluation bordism ∅ Y ∗ q Y
evYoo .

Y1 = ∅

Y ∗

Y

id

id

Σ = Y =

Σc = Y c

W+
0 = (Y ∗)+ q Y +

Y ∗ q Y = Y0

24. The definition of field theories

Last time we carefully defined the symmetric monoidal category d-RB1 and saw

two examples of interesting elements, the identity bordism Y Y
idoo and the

evaluation bordism ∅ Y ∗ q Y
evYoo . Let us now see that there is no co-evaluation

Y ∗ q Y ∅oo . The map i1 must be a restriction of idY q idY to a tubular
neighborhood of the core of Y1 = Y ∗ q Y . But such a map cannot possibly be an
isometric embedding as required.

In unitary field theories, the evaluation bordism in the bordism category is the
origin of the sesquilinear form on the vector spaces in the linear target category. A
natural question to ask is: how can we geometrically guarantee that this form is
positive definite? Presently, the answer is unknown.
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We are now ready to state the final version of the definition of Riemannian field
theories. Let SymCat/Man denote the strict 2-category of symmetric monoidal
categories Grothendieck fibered over Man, the category of smooth manifolds.

Definition of TVfam. By TVfam we denote the category internal to the strict
2-category SymCat/Man defined by the following data. (It is the “family version”
of the internal category TV considered previously.)

TVfam
0 is the symmetric monoidal category of sheaves of topological vector spaces

over smooth manifolds defined as follows.
• Objects: Pairs (S,V) where S is a smooth manifold and V is a sheaf of

objects of TV0.
• Morphisms: Commutative diagrams of sheaf maps

V f̂ //

²²

V ′

²²
S

f // S′

such that f̂ induces an isomorphism on stalks.
• Symmetric Monoidal Structure: Outer tensor product of sheaves.
• Monoidal Unit: The sheaf C→ pt.

TVfam
1 is the symmetric monoidal category Grothendieck fibered over Man defined

as follows.
• Objects: Maps of sheaves of topological vector spaces over the same pa-

rameter space.

V0

²²

T // V1

²²
S S

• Morphisms: Pairs of cartesian morphisms f̂0 and f̂1 making diagrams of
the following type commute.

V0
f̂0 //

ÂÂ?
??

??
??

?

²²

V ′0

²²

ÂÂ?
??

??
??

V1
f̂1 //

~~~~
~~

~~
~~

V ′1

~~~~
~~

~~
~~

S
f // S′

• Symmetric Monoidal Structure: Tensor product of sheaf maps.
• Monoidal Unit:

Definition of d-RBfam. By d-RBfam we denote the category internal to the strict
2-category SymCat/Man defined by the following data. (It is the “family version”
of the internal category d-RB considered previously.)

d-RBfam
0 is the symmetric monoidal category fibered over Man defined as follows.
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• Objects: Smooth submersions Y → S with d-dimensional fibers with the
following additional data: 1) a decomposition Y = Y + q Y c q Y − as sets
where Y c is a topological submanifold of Y of codimension 1, called the
core of Y , Y ± are smooth open sub-manifolds with containing Y c in their
closure.

• Morphisms:
• Symmetric Monoidal Structure:
• Monoidal Unit:

d-RBfam
1 is the symmetric monoidal category defined as follows.
• Objects:
• Morphisms: i0 and i1 become maps over the identity on S.
• Symmetric Monoidal Structure:
• Monoidal Unit:

Definition 24.1 (Final Version). A d-dimensional Riemannian field theory is
a functor E : d-RBfam → TVfam of categories internal to the strict 2-category
SymCat/Man.

Here is a picture of an object in d-RBfam
0 .

)
(
S

Y

Y +

Y c

Y −

25. Supermanifolds

Okay, now for a digression on super-manifolds. Recall that a super vector space
over a field k is simply a Z/2Z-graded vector space over k. The category Vectk

of vector spaces over k and linear maps between them, together with the algebraic
tensor product of vector spaces ⊗, forms a monoidal category (Vectk,⊗, k). Anal-
ogously, the category of super vector spaces SVectk together with the algebraic
tensor product of graded vector spaces forms a monoidal category (SVectk,⊗, k)
where the field k is viewed as a super vector space of dimension 1|0.

An associative algebra C with unit over k is a vector space C over k together
with a multiplication map m : C ⊗ C → C and a distinguished element u ∈ C
such that various properties hold. For example, the multiplication is associative
and u acts as a unit element for the multiplication, etc. This can be put into
a categorical perspective by expressing these properties in terms of commutative
diagrams. Recall that if (C,⊗, 1) is a monoidal category, then a monoid in C is a
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triple (C, m, u) where C ∈ C, m ∈ C(C ⊗ C,C) and u ∈ C(1, C) satisfying various
commutative diagrams expressing associativity, unit properties, etc. An algebra
over k is a monoid in (Vectk,⊗, k) and analogously, a monoid in (SVectk,⊗, k) is
termed a super algebra over k.

Typically, we also regard the monoidal category (Vectk,⊗, k) as a braided cate-
gory where, given V, W ∈ Vectk, the braiding isomorphism σV,W : V ⊗W → W ⊗V
is the linear map defined by the assignments v ⊗ w → w ⊗ v for each v ∈ V ,
w ∈ W . Commutativity of the multiplication map for an algebra over k can then
be expressed in terms of commutative diagrams involving the braiding isomorphism
and this can be generalized to the definition of a commutative monoid in a braided
category. In the monoidal category (SVectk,⊗, k), the interesting braiding is the
one which encodes the sign rule and is the linear map σV,W : V ⊗ W → W ⊗ V

defined on homogeneous elements by the assignments v ⊗ w 7→ (−1)|v||w|w ⊗ v
where |v|, |w| ∈ {0, 1} denotes the degree. A commutative super algebra over k is
a commutative monoid in the symmetric monoidal category (SVectk,⊗, 1, σ).

Example 25.1. Examples of commutative super algebras abound in geometry and
topology.

a) The first standard example from algebra is the exterior algebra Λ[θ1, . . . , θk]
where the parity of each of the generators θj is odd.

b) If M is a smooth manifold, then C∞(M) is a commutative super algebra
which happens to be purely even.

c) More generally, the differential forms on M , Ω•(M) = Ωev(M)⊕Ωodd(M),
form a commutative super-algebra with respect to the wedge product.

d) The cohomology of M , H•(M,R) together with the cup-product gives an-
other example.

Definition 25.2. A (complex) super manifold M of dimension d|δ is a pair M =
(Mred,OM ) where

• Mred is a topological space (called the reduced manifold) and
• OM is a sheaf of commutative (complex) super algebras over Mred

such that M = (Mred,OM ) is locally isomorphic to

Rd|δ = (Rd|δ, C∞(Rd,C)⊗ Λ[θ1, . . . , θδ]).

A couple of remarks are in order here. First, the topological space Mred is called
the reduced manifold because it is a consequence of the definition that Mred inherits
the structure of a smooth manifold. Second, super manifolds come in two flavors:
real and complex. A real super manifold has a structure sheaf of commutative super
algebras over R, whereas in the version we will deal with here the base field is C.
This distinction is something special to super manifolds. For an ordinary manifold,
the structure sheaf may be taken to consist of the smooth real valued functions
or the smooth complex valued functions on M. There is no information gained or
lost. The reader should be warned however, that complex super manifolds do not
a priori have a complex structure on the reduced manifold Mred. Finally, it should
be noted that an ordinary manifold of dimension d may be regarded as a super
manifold of dimension d|0.

Example 25.3. If E → N is a complex vector bundle of rank δ over N , where N is a
smooth manifold of dimension d, then it can be used to produce a d|δ-dimensional
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super manifold ΠE. One sets (ΠE)red = N and defines OΠE to be the sheaf of
smooth sections of the bundle of super commutative algebras

∧•
E∗ over N .

Definition 25.4. Given a super manifold M the vector space (over C) of smooth
functions on M is defined to be C∞(M) := Γ(OM ).

For example, if N is a smooth manifold and TCN denotes the complexified tan-
gent bundle of N , then C∞(ΠTCN) = Γ(N,

∧•(T ∗CN)) = Ω•(N,C).

Definition 25.5. Given two super manifolds M and M ′, a morphism of super
manifolds M → M ′ is a smooth map f : Mred → M ′

red together with a map of
sheaves f̂ : OM → OM ′ over f .

Definition 25.6. Let SMan denote the category whose objects are super-manifolds
and whose morphisms are morphisms are super-manifolds.

It should be noted that a morphism of super manifolds M → M ′ induces an ho-
momorphism of commutative super algebras C∞(M) ← C∞(M ′). Let SAlg denote
the category of super algebras over C and super algebra homomorphisms. The nice
thing is that the sheaves involved in the theory are flasque (flabby) sheaves which
means roughly that they have many global sections. It turns out that SMan(M,M ′)
is in bijection as a set with SAlg(C∞(M ′), C∞(M)).

The construction used to produce examples of super manifolds from vector bun-
dles actually gives rise to a functor Π from the category VectCBun of complex vector
bundles over smooth manifolds to SMan. Both the domain and range categories
of this functor are Grothendieck fibered over Man and this functor commutes the
forgetful functors to Man.

Theorem 25.7 (Batchelor). The functor Π: VectCBun → SMan induces a bijec-
tion on isomorphism classes of objects.

In other words, every super manifold, up to isomorphism, comes from vector
bundle via the functor Π. If the functor induced a bijection on morphisms, then it
would necessarily be an equivalence of categories. However, Π is injective but not
surjective on morphisms in general.

Example 25.8. Let us examine the morphisms R0|2 → R. Regard R0|2 as ΠE where
E is the trivial vector bundle pt × C2 → pt and regard R as ΠE′ where E′ is the
rank zero vector bundle R×{0} → R. Then VectCBun(E,E′) is in bijection with R.
In addition, SMan(R0|2,R) = SAlg(C∞(R), C∞(R0|2)) = SAlg(C∞(R), Λ[θ1, θ2]).
Since each f ∈ C∞(R) is purely even, and homomorphisms ψ of super algebras
must preserve degree, ψ(f) = ψ0(f)1 + ψ1(f)θ1θ2 where ψ0, ψ1 : C∞(R,C) → C.
What properties must the functions ψ0 and ψ1 have for ψ to be a morphism of
super algebras?

On the one hand

ψ(f)ψ(g) = (ψ0(f)1 + ψ1(f)θ1θ2)(ψ0(g)1 + ψ1(g)θ1θ2)
= ψ0(f)ψ0(g)1 + (ψ0(f)ψ1(g) + ψ1(f)ψ0(g))θ1θ2

and on the other, ψ(f)ψ(g) = ψ(fg) = ψ0(fg)1+ψ1(fg)θ1θ2. Matching coefficients,
we see that ψ0 is an algebra homomorphism C∞(R,C) → C. Such maps are simply
evaluations at points of R. Consequently, ψ1 is a derivation at the point determined
by ψ0. Thus, SMan(R0|2,R) is in bijection with the set TCR.
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Now we would like to make sense of Euclidean super manifolds. In the context of
Riemannian geometry, a Euclidean structure on M is the same as a flat Riemannian
metric and this is equivalent to the condition that M admits an atlas of charts whose
transition maps belong to the Euclidean group Rd oO(d). In keeping with Klein’s
Erlangen Program, we can define a G-structure on a manifold M by demanding
that M admit an atlas whose transition functions belong to an affine group G. As
a super Euclidean group we will use the super Lie group Rd|δ o Spin(d).

Definition 25.9. Given M, N ∈ SMan, the cartesian product is defined as

M ×N = (Mred ×Nred, p
∗
1OM ⊗ p∗2ON )

where OM and ON are viewed as sheaves of topological algebras with the Frechét
topology and the tensor product is that induced on sheaves from the projective
tensor product of topological algebras.

The Frechét topology on smooth functions is the only topology for which the
multiplication is continuous, so we make use of topological algebras. It is a theorem
that in the purely even case, the sheaf p∗1OM ⊗ p∗2ON is isomorphic to C∞(M ×N)
as sheaves of topological algebras.

Definition 25.10. A super Lie group is a group object in the category SMan.

So, how do we view R1|1 as a super Lie group? Here is the physics formula for
the group law:

((t1, θ1), (t2, θ2)) 7→ (t1 + t2 + θ1θ2, θ1θ2)
There are at least two ways to interpret this formal expression. The first we can
mention now, the second we will do next time. This morphism of super manifolds
is equivalent to a morphism of super algebras

C∞(R1|1)⊗ C∞(R1|1) C∞(R1|1)oo

or, equivalently, a morphism of super algebras

C∞(R)[θ]⊗ C∞(R)[θ] C∞(R)[θ].oo

According to the formula, this map should be determined by the assignments t 7→
t⊗ 1 + 1⊗ t + θ ⊗ θ and θ 7→ θ ⊗ 1 + 1⊗ θ.

26. Generalized Supermanifolds and the Super Euclidean group

Last time we wrote down the physics formula for the group law µ : R1|1×R1|1 →
R1|1, namely

((t1, θ1), (t2, θ2)) 7→ (t1 + t2 + θ1θ2, θ1 + θ2),
and discussed one interpretation in terms of induced maps of algebras. Another
interpretation involves the functor of points formalism.

Given M ∈ Man, how can one recover M as a set? The set of morphisms
Man(pt,M) is a set bijective to M . Now, if M ∈ SMan(pt,M),

SMan(pt,M) = SAlg(C∞(M), C∞(pt)) = SAlg(C∞(M)/J,C)

where J is the ideal in C∞(M) generated by the odd elements. A fact from the
theory of super manifolds that one should know is that C∞(M)/J ' C∞(Mred).
Thus,

SMan(pt,M) = SAlg(C∞(Mred,C))
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which is bijective to Mred as a set. The moral is that it is not enough to look at
just the points of M .

Definition 26.1. Given S, M ∈ SMan, define

MS := SMan(S,M)

and call it the set of S-points of M .

From this we obtain a functor YM ∈ Fun(SManop, Set) by S 7→ MS and then a
functor SMan → Fun(SManop,Set) by the assignment M → YM . Of course, this
could have been done in any category C.
Lemma 26.2 (Yoneda). Let C be a category. The functor Y : C → Fun(Cop, Set) is
full and faithful, i.e., on morphisms Y : C(M, N) → NatTrans(YM , YN ) is surjective
(full) and injective (faithful).

The upshot is that Fun(Cop, Set) is a larger category that “contains” C as a
subcategory.

Definition 26.3. A generalized super manifold is an object of Fun(SManop, Set).

Now, let’s apply the Yoneda lemma to construct the map µ. First, we must
understand the S-points of Rd|δ,

Rd|δ
S := SMan(S,Rd|δ) = SAlg(C∞(Rd|δ, C∞(S))).

By definition C∞(Rd|δ) = C∞(Rd)⊗Λ[θ1, . . . , θδ]. Topologically, C∞(Rd) is gener-
ated by the coordinate functions t1, . . . , td. Thus, ψ ∈ SAlg(C∞(Rd|δ), C∞(S)) is
determined by what it does to t1, . . . , td and θ1, . . . , θδ. Since ψ must also preserve
parity, we have a bijection of sets,

SAlg(C∞(Rd|δ), C∞(S))

with
C∞(S)ev ⊕ · · · ⊕ C∞(S)ev

︸ ︷︷ ︸
d copies

⊕C∞(S)odd ⊕ · · · ⊕ C∞(S)odd

︸ ︷︷ ︸
δ copies

given by the assignment

ψ 7→ (ψ(t1), . . . , ψ(td), ψ(θ1), . . . , ψ(θδ)).

Now, in order to interpret the physics formula for the group law on R1|1, we
apply the functor of points formalism to describe not one morphism

µ : R1|1 × R1|1 → R1|1

but a whole collection of maps between sets

µS : (R1|1 × R1|1)S → R1|1
S

which is natural in S ∈ SMan. Now (R1|1 × R1|1)S = R1|1
S × R1|1

S , so to specify µS

we just write down the map

((t1, θ1), (t2, θ2) 7→ (t1 + t2 + θ1θ2, θ1 + θ2)

where now t1, t2 ∈ C∞(S)ev and θ1, θ2 ∈ C∞(S)odd.
The next notion which needs to be discussed is that of internal hom. This is,

more or less, a way of starting with a set of morphisms and viewing it as an object.
For example, given X,Y ∈ Top, the set Top(X,Y ) can be given the compact open
topology and then viewed as a topological space, i.e., as an object of Top. For



70 STEPHAN STOLZ (NOTES BY ARLO CAINE)

smooth manifolds this doesn’t quite work because the mapping space is no longer
a finite dimensional manifold unless either the source or target object is a point.

Definition 26.4. Given M, N ∈ SMan, we denote by SMan(M,N) the gen-
eralized super manifold (“internal hom”) defined via the functor of points by
SMan(M,N)S := SMan(M × S, N).

This gives a nice way of thinking about mapping spaces as generalized manifolds.

Proposition 26.5. If M ∈ Man, then SMan(R0|1,M) is isomorphic to ΠTCM .

Proof. We need to find a natural collection of bijections

SMan(R0|1,M)S
oo // (ΠTCM)S .

Unraveling,

SMan(R0|1,M)S = SMan(R0|1 × S, M)

= SAlg(C∞(M), C∞(S × R0|1))
= SAlg(C∞(M), C∞(S)[θ]),

whereas

(ΠTCM)S = SMan(S, ΠTCM)
= SAlg(C∞(ΠTCM), C∞(S))
= Ω•(M,C).

Suppose ψ ∈ SAlg(C∞(M), C∞(S)[θ]). Given f ∈ C∞(M), ψ(f) = ψ0(f)+ψ1(f)θ
where ψ0(f) ∈ C∞(S)ev and ψ1(f) ∈ C∞(S)odd. Now, Ω•(M,C) is generated
by functions and 1-forms as an algebra and without loss of generality we can
consider one forms of the form dg for some g ∈ C∞(M). So we define ψ̃ ∈
SAlg(Ω•(M,C), C∞(S)) linearly by the assignments f 7→ ψ0(f) and dg 7→ ψ1(g)
using ψ. We leave it as an exercise to check that ψ̃ is actually an algebra homo-
morphism. This is assignment is bijective and natural in S. ¤
The super Euclidean group of Rd|δ. The data we will need to define the super
Euclidean group is the following.

• Rd equipped with the standard inner product, for which we will write V .
• A choice ∆ of a module over Clev(V )⊗R C.
• A Spin(d)-equivariant linear map Γ: ∆⊗∆ → V .

These data determine a group structure on the super manifold V ×Π∆ := Π(V ×∆)
where V ×∆ is regarded as the trivial bundle over V .

Using the S-point formalism, the group law (V ×Π∆)S×(V ×Π∆)S → V ×Π∆S

is given by the map

((v1, θ1), (v2, θ2)) 7→ (v1 + v2 + Γ(θ1 ⊗ θ2), θ1 + θ2)

where v1, v2 ∈ C∞(S)ev ⊗ V and θ1, θ2 ∈ C∞(S)odd ⊗∆.
This makes V ×Π∆ into a super Lie group. If δ = dimC∆, then V ×Π∆ = Rd|δ

as a (complex) super manifold. In analogy with the ordinary setting of Rn, we say
that the action Rd|δ on itself is by translations.

Definition 26.6. By Eucl(Rd|δ) we denote the super Lie group Rd|δ o Spin(d)
where Spin(d) acts on Rd|δ = V ×Π∆ via SO(d) on V and via Clev(V ) through the
module structure on ∆.
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Some comments are in order with this definition. First of all, the formula for the
semi-direct product looks the same as for ordinary groups via the S-point formalism
and so the semi-direct product is well-defined in this setting as well. Secondly, the
notation hides a great deal of information. It should be noted that although Rd|δ

makes sense as a super manifold for any pair of non-negative integers d|δ, the group
Eucl(Rd|δ) only makes sense for certain pairs. While any d is allowed, the number δ
is constrained by the representation theory of Clev(V )⊗RC. Furthermore, the map
Γ is suppressed. We are interested in the cases 0|1, 1|1, and 2|1. In the first two
cases, there is a unique ∆ and in the last case there are two, up to isomorphism.
There are also a few choices for Γ. In general, there are several possible modules ∆
and many possible maps Γ that can be used, particularly if ∆ is highly reducible.

27. Super Euclidean Manifolds

Last time we defined Eucl(Rd|δ) = Rd|δ o Spin(d) as a super Lie group. Recall
that the data needed for its definition were: 1) a d-dimensional inner product space
V = Rd, a δ-dimensional Clev⊗C-module ∆, and a Spin(d)-equivariant linear map
Γ: ∆⊗∆ → V ⊗R C.

Example 27.1. Let d|δ = 2|1. Consider the standard Euclidean inner product on
R2. Then Cl(R2) = H and Clev(R2) ' C. There are two possible choices for ∆:

(1) ∆ = C where z ∈ Clev(R2) = C acts by multiplication by z, and
(2) ∆ = C where z acts by multiplication by z̄.

By construction G = Eucl(Rd|δ) acts on M = Rd|δ (the “model space”). In
keeping with Klein’s Erlangen Program, we can define a geometry on Y using the
data of M and G. First, note that by an open set of a super manifold Y we mean
an open set of the reduced space Yred together with sheaf obtained from OY by
restriction. If Y d|δ is a super-manifold, then a chart on Y is an isomorphism of
super-manifolds ϕ : U → V where U ⊂ Y is an open subset of Y and V is an open
subset of Rd|δ.

Definition 27.2. An (M, G)-structure on Y d|δ ∈ SMan is a maximal atlas charts
ϕi : Ui → Vi such that for each transition map ϕj ◦ ϕ−1

i : Vi ∩ Vj → Vi ∩ Vj there
is a gi ∈ G such that ϕj ◦ ϕ−1

i is the restriction of the action of gi on M. A
(Rd|δ,Eucl(Rd|δ)-structure on Y is called a Euclidean structure on Y .

Note that a Euclidean structure on Y induces a Euclidean structure plus a spin
structure on Yred. This is because on Yred, the group Rdo Spin(d) acts as opposed
to just Rd o SO(d).

Of course, we need to work in families, so the next definition promotes the
previous one to that level.

Definition 27.3. A family of (M, G)-manifolds is a morphism ρ ∈ SMan(Y, S)
together with a maximal atlas of charts Y ⊃ Ui

ϕ−→ Vi ⊂ M × S such that each
transition map

S ×M ⊃ Vi ∩ Vj → Vi ∩ Vj ⊂ S ×M
is a morphism of SMan of the form (s,m) 7→ (s, g(s).m) where g : ρ(Ui ∩ Uj) → G.

A consequence of this definition is that ρ always has local sections and in the
even case is a submersion.
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Definition 27.4. A d|δ-dimensional EFT over a smooth manifold X is a functor
E : d|δ-EBfam(X) → TVfam between categories internal to the strict 2-category
SymCat/SMan of symmetric monoidal categories fibered over SMan. The internal
categories d|δ-EBfam and TVfam are defined as follows.

TVfam
0 : symmetric monoidal category fibered over SMan.

• Objects: pairs (S,V) where S ∈ SMan and V is a sheaf of topological
OS-modules over Sred.
• Morphisms: Morphisms of ringed spaces inducing isomorphisms on the
stalks.
• Monoidal structure: (S1,V1) ⊗ (S2,V2) := (S1 × S2,V1 £ V2) where £
denotes the external tensor product of sheaves.
• Monoidal unit: The bosonic point.

TVfam
1 : symmetric monoidal category fibered over SMan.

• Objects: Morphisms T : V1 → V2 of sheaves of OS-modules over S.
• Morphisms:
• Monoidal structure:
• Monoidal unit:

d|δ-EBfam
0 : symmetric monoidal category fibered over SMan.
• Objects: Pairs (Y → S, f), each referred to as a family of Euclidean d|δ-
manifolds equipped with a map to X satisfying a number of conditions. The
(d|δ +sdim(S))-dimensional supermanifold Y comes with a (piecewise) sub
(d−1)|δ-supermanifold of Y c, called the core of Y such that the composition
Y c ↪→ Y → S is a proper map (on reduced spaces), and a decomposition
Yred = Y −

red q Y c
red q Y +

red where Y c
red has codimension 1 in Yred. The fibers

of Y → S are Euclidean supermanifolds.
• Morphisms:
• Monoidal structure:
• Monoidal unit:

d|δ-EBfam
1 : symmetric monoidal category fibered over SMan.
• Objects: Commutative diagrams

X

Y c
1 ⊂ Y1

i1
//

f1

;;vvvvvvvvv

##HHHHHHHHH Σ

f

OO

²²

Y0 ⊃ Y c
0i0

oo

f0

ccHHHHHHHHH

{{vvvvvvvvv

S

where Σ is a Euclidean d|δ-manifold and the conditions on Σ from the
non-family version hold fiber-wise.
• Morphisms:
• Monoidal structure:
• Monoidal unit:

As one final remark, note that each point x ∈ X determines a functor d|δ-
EBfam → d|δ-EBfam(X) given by assigning to Y the pair (Y, x) where x denotes
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the constant map to x ∈ X. Hence each d|δ-EFT E over X determines a d|δ-
dimensional EFT by pre-composition with this functor.

28. EFT’s of dimensions 0 and 0|1
The goal of this lecture is to classify 0-dimensional EFT’s and 0|1-dimensional

EFT’s over a manifold X. For the moment, let us fall back to the non-family
definition: a 0-dimensional EFT over X is a functor E : 0-EB(X) → TV where
0-EB(X) and TV are categories internal to the strict 2-category SymCat.

There is only one object in 0-EB(X)0, namely ∅. The objects in 0-EB(X)1 are
0-manifolds together with maps to X, i.e., a collection of points in X. Under E

ptq . . .q pt
f // X 7→ E(f) ∈ Hom(E(∅), E(∅)) = C,

so it suffices to understand what E does to x : pt → X, since E(f : ptq . . .q pt →
X) =

∏k
`=1 E(x`) if x1, . . . , xk denote the points of X selected by f . Simply

put, this is all of the information contained in the functor. In other words, it is
completely determined by a choice of a function Ê : X → C by sending x : pt → X
to E(x).

The 0-dimensional EFT’s over X form a discrete category15 equivalent to the
discrete category Maps(X,C) whose objects are set maps X → C. In the final
definition of a 0-EFT over X we demand that E be a functor 0-EBfam(X) →
TVfam. The next proposition relates these full-blown field theories to the discrete
category C∞(X,C) whose objects are smooth maps X → C.

Proposition 28.1. The category 0-EFTfam(X) is equivalent the category C∞(X,C).

Proof. First we show how to construct from E ∈ 0-EFTfam(X) a smooth function
Ê ∈ C∞(X,C). The objects of 0-EBfam(X)0 are diagrams of the form

∅ f //

²²

X

S

where S is a smooth manifold. The value of E on such a diagram is simply the sheaf
of smooth functions over S. Objects in 0-EBfam(X)1 are slightly more interesting
diagrams of the form

(28.1) Σ
f //

p

²²

X

S

where p : Σ → S is a finite sheeted covering of S. The value of E on such a diagram
is then an endomorphism of the sheaf of smooth functions on S and hence is just
multiplication by a single smooth function on S.

15Only morphisms are identity morphisms.
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Define Ê ∈ C∞(X,C) to be the value of E on the diagram

X × pt
p //

p

²²

X

X

where both the vertical and horizontal maps are the natural projections. In some
sense, this is a universal object in 0-EBfam(X)1.

Conversely, given a function g ∈ C∞(X,C), we wish to define a functor Eg : 0-
EBfam(X) → TVfam. It is clear what needs to be done on 0-EBfam(X)0. The
interesting part is how we define Eg on objects of 0-EBfam(X)1 as in (28.1). As the
value of E on such an object will be the operation of multiplication by a smooth
function on the base space S, it suffices to specify its value at each point s ∈ S.
The map p is a finite sheeted covering and the complex number we assign is the
product ∏

σ∈p−1(s)

g(f(σ)).

It remains to check that EÊ = E. This clearly holds on 0-EBfam(X)0, but one
needs to check that it holds on 0-EBfam(X)1. There, both sides can be identified
with smooth complex-valued functions over S. It is therefore sufficient to show that
the values are the same point-wise over S.

Let S ∈ Man and let s ∈ Man(pt, S), then we have a diagram

X

p−1(s)

f |p−1(s)

<<xxxxxxxx

²²

// E

f

OO

p

²²
pt s // S

and since E is compatible with pull-backs, it suffices to show equality of EÊ(p−1(s))
and E(p−1(s)). By definition EÊ(p−1(s)) =

∏
σ∈p−1(s) Ê(f(σ)) and due to the fact

that E is a symmetric monoidal functor the value of E(p−1(s)) is the same. ¤

Corollary 28.2. Nothing is gained in dimension 0 by passing to concordance
classes.

Let Ωev
cl (X,C) denote the set of all closed complex-valued even differential forms

on X, viewed as a discrete category.

Theorem 28.3. The categories 0|1-EFTfam(X) and Ωev
cl (X,C) are equivalent.

A quick application of Stokes’ theorem yields the following corollary.

Corollary 28.4. There is a bijection 0|1-EFTfam[X] ↔ Hev
dR(X;C).

Proof of Theorem. We will first extract a differential form on X from E ∈ 0|1-
EFT(X) by evaluating E on a “universal object.” Then we will use the Euclidean
structure to argue that it is even and that it is closed.
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First, some reductions. Recall that objects of 0|1-EBfam(X)1 are diagrams

Σ
f //

p

²²

X

S

where p is submersion with 0|1-dimensional fibers equipped with a Eucl(R0|1)-
structure. It is sufficient to consider maps with fiber a single super point R0|1

because of the monoidal structure. Furthermore, it is sufficient to consider trivial
bundles by restriction to smaller open sets. Recall that SMan(R0|1, X) can be made
into a super manifold SMan(R0|1, X) by the internal-hom construction.

As before, the value of E on an object of 0|1-EBfam(X) can be identified with a
smooth function on the base space S. Define Ê to be the value of E on the object

SMan(R0|1 ×X)× R0|1

²²

ev // X

SMan(R0|1 ×X)

then Ê ∈ C∞(SMan(R0|1 ×X)) = C∞(Π(TXC)) = Ω•(X,C).

Claim 1: Ê ∈ Ωev(X,C).

Claim 2: dÊ = 0.

These claims are proved by examining the action of automorphisms by the Eu-
clidean group. Let G = Eucl(R0|1) = R0|1 o Z/2Z. Now G acts on R0|1 and
hence acts on SMan(R0|1, X) by pre-composition. The R0|1 factor acts by “trans-
lations” and the generator of the Z/2Z factor acts by a transformation we will call
“flip.” The action of the flip transformation on a smooth manifold M is the map
Ω(M) → Ω(M) given by ω 7→ (−1)pω for ω ∈ Ωp(M). The translation action

SMan(R0|1, X)× R0|1 µ // SMan(R0|1, X)

is given in terms of its action on functions

Ω(X,C)[θ] Ω(X,C)
µ∗oo

by ω 7→ ω + dω ⊗ θ.
Write S for SMan(R0|1, X) for brevity. To prove claim 1, we apply the functor

E to the commutative diagram

X X

S × R0|1

²²

ev

OO

flip×flip// S × R0|1

ev

OO

²²
S

flip // S

to obtain the equality Ê = flip∗(Ê), i.e., Ê is invariant under the action of the flip
transformation. Thus Ê ∈ Ωev(X).
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To prove the second claim, we make the following important observation. The
evaluation map S × R0|1 → X can be factored in two different ways. Recall that
µ : R0|1 × R0|1 → R0|1 defines the group law on R0|1. Abusing notation, let µ also
denote the action map S × R0|1 → S induced by pre-composition with µ. Then
ev ◦ (id× µ) = ev ◦ (µ× id) and this gives us the following commutative diagram.

X X

S × R0|1 × R0|1

OO

id×µ
--

µ×id

11

p1×p2

²²

S × R0|1

ev

OO

²²
S × R0|1

p1

++

µ

33 S

Applying the functor E to this diagram gives a relation between the pull-backs of
Ê under the maps p1 and µ, namely p∗1Ê = µ∗(Ê). But µ∗Ê = Ê⊗ 1 + dÊ⊗ θ and
p∗1Ê = Ê ⊗ 1, whence dÊ = 0. This completes the proof. ¤

29. The partition function of a 2|1-EFT

The final lecture will be devoted to an outline of the proof of the following
theorem.

Theorem 29.1. The partition function of a 2|1-EFT is a weakly holomorphic
integral modular form of weight zero.

Let E be a 2|1-EFT. Recall that one can form a 2-dimensional Euclidean spin
field theory E from E by pre-composition with the superfication functor ζ.

2-EBfam
spin

E

11
ζ // 2|1-EBfam E // TVfam

The “generalized partition function” of E was then defined to be ZE = ZE : R+ ×
h → C where ZE(`, τ) 7→ E(C/(Z + τZ)`) is the value of E on the Euclidean
torus defined by τ and `. Then the “ordinary partition function” is obtained by
restriction to 1× h.

Given an object Y Y
Σoo of d|δ-EB1, we can always glue the ends to form a

closed Euclidean super manifold Σ̂. If E is a d|δ-EFT, then16 E(Σ̂) = str (E(Σ)).
Implicit in this fact is the statement that E(Σ) is trace class.

Now consider the family of Euclidean spin-bordisms of the circle to itself obtained
from the parallelogram in the upper half-plane spanned by ` and `τ by identifying
the two non-horizontal edges to obtain a cylinder C`,τ . The spin structure on C`,τ

is mean to be that induced from the standard spin structure on C. This family has
the properties that C`,τ+1 = C`,τ and C`,τ ◦ C`,τ ′ = C`,τ+τ ′ for each ` ∈ R+ and
τ ∈ h.

For fixed `, {E(C`,τ ) : τ ∈ h} is a commuting family of trace class (and hence
compact) operators depending only τ modulo Z, or equivalently depending only
on q = e2πiτ ∈ D \ {0}. This implies that E(C`,τ ) = qL0 q̄L̄0 where L0 and L̄0

16Caveat: Assume that Σc is a d-manifold with boundary to eliminate the case of “thin”
bordisms.
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are unbounded operators with discrete spectrum. It is the case that the spectrum
of L0 − L̄0 lies in Z. Heuristically, one can imagine taking q ∈ ∂D = S1, then
q̄ = q−1, so qL0−L̄0 would be well-defined if and only if the spectrum of L0 − L̄0

was contained in Z.
Let T`,τ = C/(Z + τZ)` denote the torus obtained from the cylinder C`,τ

by identifying the ends, then E(T`,τ ) = strE(C`,τ ). We can compute this us-
ing the eigenspace decomposition of the vector space V = E(S1

` ) =
⊕

a,b Va,b,
a ∈ Spec (L0), b ∈ Spec (L̄0). With this decomposition

str E(C`,τ ) =
∑

a,b

strE(C`,τ )|Va,b
=

∑

a,b

qaq̄bsdim Va,b

where a ∈ Spec (L0) and b ∈ Spec (L̄0).
Key Fact: If E comes from a 2|1-EFT E, then L̄0 = Ḡ2

0 where Ḡ0 is an odd
operator and L0, L̄0 and Ḡ0 all commute in the graded sense.

Then Ḡ0 : V ev
a,b → V odd

a,b for each a, b and is an isomorphism unless b = 0. There-
fore sdim Va,b = 0 unless b = 0. Hence

strE(C`,τ ) =
∑

a

qasdim Va,0

where a ∈ Spec (L0) ⊂ Z. Thus E(T`,τ ) has an integral q-expansion in D \ {0}.
The only dependence of the sum on ` is in the integers sdim Va,0 which depend
continuously on ` and are therefore constant.

If there are infinitely many eigenspaces Va,0 for negative a with sdim Va,0 6= 0,
then one obtains a contradiction to the compactness of E(C`,τ ). Thus ZE(1, τ) is
is a holomorphic function of q in D \ {0} with at worst a pole singularity at zero
and an integral q-expansion.

The modularity of ZE(1, τ) is an immediate consequence of the the isomorphism
of Euclidean manifolds T|cτ+d|`,τ ' T`,τ for

A =
(

a b
c d

)
∈ SL(2,Z).

Indeed,
ZE(`, Aτ) = ZE(|cτ + d|`, Aτ) = ZE(`, τ).

Therefore ZE(1, τ) transforms as a modular form of weight 0.
All that remains is to explain the Key Fact. Write R2

+ for h regarded as a Lie
semi-group. For fixed `, h/`Z = R2

+/`Z can be regarded as the moduli space of
cylinders because addition in the semi-group corresponds to gluing of cylinders.
The functor E yields a representation R2

+ → End(V ) of this Lie semi-group. The
induced map on complexified Lie algebras sends the left-invariant complex vector
fields ∂z and ∂z̄ to L0 and L̄0, respectively.

Analogously, there is a super Lie semi-group R2|1
+ /`Z of “(complex) super cylin-

ders” and E gives a representation R2|1
+ → End(V ). Gluing of super-cylinders

corresponds to the super-semigroup law on R2|1
+ given by the physics formula

(z1, z̄1, θ1), (z2, z̄2, θ2) 7→ (z1 + z2, z̄1 + z̄2 + θ1θ2, θ1 + θ2).

The super Lie algebra Lie(R2|1
+ ) is spanned by the left-invariant vector fields on

R2|1
+ , ∂z, ∂z̄, Q where Q = ∂θ + θ∂z̄. Under E, these map to L0, L̄0, and Ḡ0. Now

observe that the graded commutator [Q,Q] = 2Q2 = 2∂z̄, so Ḡ2
0 = L̄0.
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