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Periodic Cohomology Theories
Defined by Elliptic Curves

PETER S. LANDWEBER, DOUGLAS C.
RAVENEL AND ROBERT E. STONG

Abstract. We use bordism theory to construct periodic cohomology theo-
ries, which we call elliptic cohomology, for which the cohomology of a point
is a ring of modular functions. These are complex-oriented multiplicative
cohomology theories, with formal groups associated to the universal ellip-
tic genus studied by a number of authors ([CC, LS, O, W1, Z]). We are
unable to find a geometric description for these theories.

1. Introduction

One can argue that the cohomology theories of greatest importance in alge-
braic topology are cobordism theories, K-theories and ordinary cohomology theo-
ries; each class has a wide usefulness and its own geometric character. We shall
present evidence for a fourth class of cohomology theories, which might be called
elliptic cohomology theories, since they arise in connection with elliptic curves
and (elliptic) modular forms. They are periodic theories, with two different
periodicity elements of dimension 8, whose coefficient rings (the cohomology of a
point) can be naturally identified with rings of modular functions. In addition,
they are complex-oriented with formal groups of the type arising from elliptic
curves.

Although we shall produce such theories by two methods, we are unable to
provide an intrinsic geometric definition. This glaring omission presents the
fascinating problem of finding or constructing the appropriate objects and for-
malism to give a natural description of these cohomology theories. Work by
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E. Witten ([W1, W2]) and C. Taubes ([Ta]) leads one to suspect that quantum
field theory and Dirac operators on free loop spaces will play a major role.

We shall view cohomology and homology as two sides of the same coin, since
both can be identified with their representing spectra. Indeed, our methods are
better suited to the construction of homology theories.

The coefficient rings and formal groups, for the theories of greatest interest
to us, take the following form. Let δ and ε be indeterminates of weights 2 and
4, respectively, and introduce the graded polynomial ring

M∗ = Z[ 12 ][δ, ε].

(The choice of symbol is meant to indicate “modular forms”, in agreement with
Theorem 1.5 and §5 below. An algebraic topologist would assign degree 2k to an
element of weight k.) Introduce the differential

ω = (1− 2δx2 + εx4)−
1
2 dx = R(x)−

1
2 dx

on the Jacobi quartic
y2 = 1− 2δx2 + εx4,

and the corresponding logarithm

g(x) =
∫ x

0

(1− 2δt2 + εt4)−
1
2 dt ∈ M∗⊗Q [[x]].

A formal group over M∗⊗Q is defined by

FE(x1, x2) = g−1(g(x1) + g(x2));

indeed its coefficients all lie in M∗ (see §2), and one has Euler’s explicit formula
([E, O, L3 (appendix)]):

FE(x1, x2) =
x1

√
R(x2) + x2

√
R(x1)

1− εx1
2x2

2
.

The appropriate discriminant, of weight 12, is

∆ = ε(δ2 − ε)2.

The periodic cohomology theories are multiplicative, having as coefficient rings
the localizations

(1.1) M∗[∆−1], M∗[ε−1], M∗[(δ2 − ε)−1].

We also define a ring homomorphism on the oriented bordism ring ΩSO
∗ ,

ϕ : ΩSO
∗ → M∗⊗Q,

by the requirement that

ω = (
∑

n≥0

ϕ(CP2n) x2n) dx,
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noting that ΩSO
∗ ⊗Q is a polynomial ring on the bordism classes [CP2n], n ≥ 1

([Th, MS]). Indeed this universal elliptic genus maps ΩSO
∗ into M∗ (see §2).

Let ΩSO
∗ (X) denote the oriented bordism of the space X. We shall apply the

exact functor theorem ([L1]), together with information about formal groups of
elliptic curves ([L3]), to prove:

Theorem 1.2. The functors

ΩSO
∗ (·)⊗ΩSO∗ M∗[∆−1],

ΩSO
∗ (·)⊗ΩSO∗ M∗[ε−1],

ΩSO
∗ (·)⊗ΩSO∗ M∗[(δ2 − ε)−1]

are multiplicative homology theories, with coefficient rings (1.1) viewed as ΩSO
∗ -

modules via the elliptic genus ϕ. The formal groups of the corresponding coho-
mology theories are the canonical extensions of the formal group FE(x1, x2) over
M∗ described above.

We are also able to produce a homology theory with coefficient ring M∗, by
the method of bordism with singularities due to Sullivan and Baas ([B]). Since
we have inverted 2, this is a multiplicative homology theory ([Mr]) which we
denote by M∗(X) for a space X. There is a natural transformation

Φ : ΩSO
∗ (·) → M∗(·),

extending the elliptic genus ϕ : ΩSO
∗ → M∗. One can obtain further homology

theories
M∗(·)[∆−1], M∗(·)[ε−1], M∗(·)[(δ2 − ε)−1]

by localization. The point of Theorem 1.2, now, is that one has “Conner-Floyd
theorems” (see [CF2]) for these periodic homology theories. That is, Φ induces
isomorphisms

ΩSO
∗ (·)⊗ΩSO∗ M∗[∆−1] ∼−→ M∗(·)[∆−1],

ΩSO
∗ (·)⊗ΩSO∗ M∗[ε−1] ∼−→ M∗(·)[ε−1],

ΩSO
∗ (·)⊗ΩSO∗ M∗[(δ2 − ε)−1] ∼−→ M∗(·)[(δ2 − ε)−1].

The periodic homology theories appear to have a greater claim to one’s atten-
tion than does the connective theory M∗(·). For example, we shall show that
the theories with coefficient rings M∗[ε−1] and M∗[(δ2 − ε)−1] map naturally to
KO-theory (with 2 inverted). We refer to all the periodic theories introduced
here as elliptic homology (or cohomology).

The same method entitles us to construct multiplicative homology theories
with coefficient rings

Z[ 16 ][g2, g3, ∆−1]
and

Z [a1, a2, a3, a4, a6,∆−1]
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corresponding to the Weierstrass equations

(1.3) y2 = 4x3 − g2x− g3

and

(1.4) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

for elliptic curves. Here the ai are indeterminates with wt ai = i; similarly,
g2 and g3 are indeterminates with weights 4 and 6, respectively. We refer to
Silverman [Si] for standard notions and facts about elliptic curves. For example,
see [Si, p. 46] for the discriminant ∆ = ∆(a1, . . . , a6); the classical formula in
terms of g2 and g3 is ∆ = g2

3 − 27g3
2. The formal group is constructed in [Si,

Ch. IV], and gives a universal expression for the addition on the elliptic curve
near the origin in terms of a suitable uniformizing parameter.

Notice that we are forced to invert 2 when constructing the homology theories
of greatest interest. We of course have the desire to retain 2-primary information,
which is often of paramount importance in topology. By replacing ΩSO

∗ (·) with
complex bordism ΩU

∗ (·), and using either the universal Weierstrass equation (1.4)
as above, or instead a homogeneous Deuring normal form ([Si, p. 327])

y2 + αxy + βy = x3

with ∆ = β3(α3 − 27β), we can retain 2-primary information but lose contact
with topological applications.

It is well-known that the coefficients g2 and g3 in the Weierstrass equation
(1.3) can be interpreted as modular forms for SL2(Z) ([K, Se]). As a warmup
for the proof of Theorem 1.5, one verifies easily that

Z[ 16 ][g2, g3, ∆−1]

can be identified with the ring of modular functions for SL2(Z) which are holo-
morphic on the upper half-plane H and whose q-expansions have all coefficients
in Z[ 16 ].

Returning to the ring M∗ = Z[ 12 ][δ, ε] of polynomials in the coefficients of the
Jacobi quartic

y2 = 1− 2δx2 + εx4,

we shall interpret M∗ and its localizations (1.1) as rings of modular functions for
the subgroup Γ0(2) of the modular group SL2(Z) consisting of all matrices

(
a b

c d

)

in SL2(Z) with c even. Γ0(2) is a non-normal subgroup of index 3 in SL2(Z),
with a fundamental domain

{ z : Im z > 0, 0 < Re z < 1, |z − 1
2 | > 1

2 }
for its action on the upper half-plane H, and the two cusps 0,∞. Let M∗(Γ0(2))
denote the ring of modular forms for Γ0(2), as defined in §5.
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Theorem 1.5. C[δ, ε] is naturally isomorphic to the ring M∗(Γ0(2)) of mod-
ular forms for Γ0(2), with δ and ε having weights 2 and 4, respectively. This
isomorphism sends the subring M∗ = Z[ 12 ][δ, ε] to the modular forms whose
q-expansions at the cusp τ =∞ have coefficients in Z[ 12 ]. Moreover, the localiza-
tions M∗[∆−1], M∗[ε−1] and M∗[(δ2 − ε)−1] correspond to the rings of modular
functions which are holomorphic on H, H∪ {0} and H∪ {∞}, respectively, and
whose q-expansions have coefficients in Z[ 12 ].

The rest of this paper is organized as follows. We discuss elliptic genera in
§2, and then apply the technique of bordism with singularities in §3 to construct
a homology theory with coefficient ring M∗ = Z[ 12 ][δ, ε]. We apply the exact
functor theorem to prove Theorem 1.2 in §4, and examine the connection with
KO-theory there; we construct several additional periodic homology theories by
the same method. In §5 we identify the coefficient rings of the periodic homology
theories with rings of modular functions.

The results of this paper have been announced, with brief indication of proofs,
in [L2].

The authors are grateful to David and Gregory Chudnovsky, Serge Ochanine
and Don Zagier for advice, and to Haynes Miller for his encouragement.

This paper dates from 1987, when this subject was new, and does not take
into account later contributions to the field. We apologize for the long delay
in publication, and wish to call attention to Jens Franke’s excellent treatment
of these topics, with notable simplifications and clarifications, in his paper On
the construction of elliptic cohomology [F]. In particular, Franke proves that in
Theorem 1.2 one can invert any homogeneous element of positive degree.

In addition, a construction of “integral” elliptic homology based on Spin bor-
dism has been given by Matthias Kreck and Stephan Stolz [KS], and has been
further clarified by Mark Hovey [Ho]. This theory does not require that one
invert 2, and is based on a refined elliptic genus defined by Serge Ochanine [O1],
which is sensitive to 2-primary phenomena in dimensions 8k + 1 and 8k + 2.

2. Elliptic genera

We need to develop some preliminaries on bordism theory, formal groups and
elliptic genera.

2.1. The oriented bordism ring ΩSO
∗ is obtained from closed smooth oriented

manifolds under the relation of bordism ([Th, MS]). One knows that

ΩSO
∗ ⊗Q = Q [x4, x8, . . . ]

with algebraically independent polynomial generators which may be taken to be
the bordism classes x4n = [CP2n], n ≥ 1. By a multiplicative genus, in the sense
of Hirzebruch [H], is meant a ring homomorphism

ϕ : ΩSO
∗ → R
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to a commutative algebra over Q, with ϕ(1) = 1. The best known examples of
multiplicative genera are the signature and the Â-genus. Evidently, a multiplica-
tive genus is uniquely specified by its logarithm

g(x) =
∑

n≥0

ϕ(CP2n)
2n + 1

x2n+1,

which can be any odd series in R [[x]] with linear term x.

2.2. By an elliptic genus ([O]) is meant a multiplicative genus ϕ for which
there are elements δ, ε ∈ R so that the logarithm g(x) of ϕ has the form

g(x) =
∫ x

0

(1− 2δt2 + εt4)−
1
2 dt.

Then δ = ϕ(CP2) and ε = ϕ(HP2). One obtains the signature by taking
δ = ε = 1, and the Â-genus by choosing δ = − 1

8 and ε = 0. One calls the elliptic
genus ϕ : ΩSO

∗ → R universal if δ and ε are algebraically independent over Q
and R = Q[δ, ε].

To any multiplicative genus ϕ : ΩSO
∗ → R, one associates a formal group

F (x, y) = g−1(g(x) + g(y)),

where g(x) denotes the logarithm of ϕ and g−1(u) is the inverse under com-
position. The formal group associated to an elliptic genus ϕ, with parameters
δ, ε ∈ R and

R(x) = 1− 2δx2 + εx4,

has the form

FE(x, y) =
x
√

R(y) + y
√

R(x)
1− εx2y2

;

this is Euler’s expression for the addition formula for the elliptic integral
∫ x

0

R(t)−
1
2 dt

([E, O, L3 (appendix)]).

2.3. Similarly, the complex bordism ring ΩU
∗ is obtained from closed smooth

manifolds whose stable tangent bundles have complex structures. One has

ΩU
∗ ⊗Q = Q [y2, y4, . . . ]

with algebraically independent polynomial generators y2n = [CPn], n ≥ 1. If R

is a commutative ring with unit, then a formal group over R is a power series

F (x, y) ∈ R [[x, y]]
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satisfying the identities




F (x, 0) = F (0, x) = x

F (x, F (y, z)) = F (F (x, y), z)

F (x, y) = F (y, x).

In case R is a Q-algebra and ϕ : ΩU
∗ → R is a ring homomorphism, we define a

logarithm

g(x) =
∑

n≥0

ϕ(CPn)
n + 1

xn+1

and a formal group
F (x, y) = g−1(g(x) + g(y)).

When R = ΩU
∗ ⊗Q and ϕ is the inclusion of ΩU

∗ into ΩU
∗ ⊗Q (ΩU

∗ has no torsion)
we write FU (x, y) for the resulting formal group. We refer to [R, Appendix 2]
for the following result, due to Mischenko and Quillen [Q].

Theorem 2.4. The formal group FU (x, y) is a formal group over ΩU
∗ , whose

coefficients generate ΩU
∗ . Moreover, FU is a universal formal group: for any

formal group F over R, there is a unique homomorphism ϕ : ΩU
∗ → R so that F

is obtained from FU by applying ϕ to all coefficients.

2.5. We return to Euler’s formal group FE(x, y) associated to an elliptic
genus ϕ : ΩSO

∗ → R with parameters δ, ε ∈ R. It is evident that ϕ maps ΩSO
∗

into Q[δ, ε], but we can make a sharper statement:

Proposition 2.6. The elliptic genus ϕ maps ΩSO
∗ into Z[ 12 ][δ, ε].

At the same time we will prove

Proposition 2.7. The formal group FE(x, y) associated to the elliptic genus
ϕ is defined over the subring Z[ 12 ][δ, ε] of R.

Proofs. Making use of the binomial expansion of

R(x)−
1
2 = (1− 2δx2 + εx4)−

1
2

=
∑

n≥0

Pn(δ, ε)x2n,

one sees easily that all coefficients lie in Z[ 12 ][δ, ε]; in fact they become the well-
known Legendre polynomials Pn(δ) when ε is put equal to 1. From this, it is
clear that all coefficients of

√
R(x) also lie in Z[ 12 ][δ, ε]. The explicit form of

Euler’s formal group now yields Proposition 2.7.
In addition to ϕ : ΩSO

∗ → R, we consider the composition

ΩU
∗ → ΩSO

∗
ϕ−→ R .

One knows ([St, p. 180]) that the forgetful homomorphism ΩU
∗ → ΩSO

∗ is onto
modulo torsion. Since R is assumed to be a Q-algebra and so has no torsion,
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ϕ(ΩSO
∗ ) is equal to the image of ΩU

∗ in R. The composition ΩU
∗ → R classifies

the formal group over R, so its image is the subring of R generated by the
coefficients of the formal group, in view of Theorem 2.4. Applying Proposition
2.7, we conclude that Z[ 12 ][δ, ε] contains this subring. ¤

Remark 2.8. With greater effort, one can determine the images of ΩSO
∗ and

the Spin bordism ring ΩSpin
∗ in Z[ 12 ][δ, ε], for any elliptic genus. See [L2, §5] and

[CCLOS].

Remark 2.9. Proposition 2.6 permits us to view a univeral elliptic genus as
mapping to Z[ 12 ][δ, ε] with δ and ε algebraically independent.

3. Bordism with singularities

3.1. The oriented bordism groups of a space X, ΩSO
n (X), are obtained from

maps f : Mn → X of closed smooth n-manifolds into X, under the equivalence
relation of bordism ([CF1]). In this way, one builds a homology theory ΩSO

∗ (·),
for which ΩSO

∗ (point) is the oriented bordism ring already utilized. By Cartesian
product, ΩSO

∗ (·) is a multiplicative homology theory, and ΩSO
∗ (X) is a graded

module over ΩSO
∗ .

It is an advantage to invert 2, since ΩSO
∗ [ 12 ] is a polynomial ring

ΩSO
∗ [ 12 ] = Z[ 12 ] [x4, x8, x12, . . . ].

Moreover, the forgetful homomorphism

ΩSpin
∗ → ΩSO

∗

from spin bordism to oriented bordism becomes an isomorphism when one inverts
2; all torsion in both bordism rings has order 2 (see [St]).

Proposition 3.2. It is possible to choose as polynomial generators x4n of
ΩSO
∗ [ 12 ] the bordism classes x4 = [CP2], x8 = [HP2], and suitable x4n = [M4n]

(n ≥ 3) with M4n killed by all elliptic genera.

Proof. One knows ([St, p. 180] that

ΩSO
∗ /torsion = Z [x4, x8, . . . ]

with x4n =[M4n] a generator if and only if

sn(P)[M4n] =

{
±p if 2n = ps − 1, p prime

±1 otherwise.

Hence to obtain polynomial generators for ΩSO
∗ [ 12 ] we require that

sn(P)[M4n] =

{
±2ap if 2n = ps − 1, p prime

±2a otherwise.
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Since s1(P)[CP2] = 3 and s2(P)[HP2] = −10 = −2 · 5, we can choose x4 =
[CP2] and x8 = [HP2].

It remains to find generators [M4n], n ≥ 3, killed by all elliptic genera. Let
x′4n (n ≥ 3) be arbitrary generators, and notice that by Proposition 2.6 there is
a polynomial

Qn(δ, ε) ∈ Z[ 12 ][δ, ε]

so that for every elliptic genus with parameters δ and ε

ϕ(x′4n) = Qn(δ, ε).

Take x4n = [M4n] to be x′4n − Qn(x4, x8), so that x4n is also an acceptable
polynomial generator for ΩSO

∗ [ 12 ] which is killed by all elliptic genera. ¤
Remark 3.3. Ochanine ([O]) has proved that every manifold CP(ξ2m), with

ξ2m → B a smooth complex vector bundle of even rank over a closed oriented
base, is killed by all elliptic genera. One can choose the polynomial generators
x4n = [M4n] for n ≥ 3 in the ring ΩSO

∗ [ 12 ] with M4n of the form CP(ξ2m).

3.4. It is now immediate that if I∗ denotes the ideal (x12, x16, . . . ) in ΩSO
∗ [ 12 ],

and ϕ : ΩSO
∗ → Q[δ, ε] is a universal elliptic genus with parameters δ, ε, then ϕ

induces an isomorphism

ΩSO
∗ [ 12 ]/I∗

∼−→ Z[ 12 ][δ, ε].

3.5. One can produce homology theories to order, starting from a bordism
theory, by a construction due to Sullivan and Baas ([B]). In our case, we begin
with ΩSO

∗ (·)[ 12 ], and the sequence (singularity set)

Σ = {x12, x16, . . . }
where the generators are chosen as in Proposition 3.2. Noting that the sequence
x12, x16, . . . is a regular sequence in the ring ΩSO

∗ [ 12 ], generating the ideal I∗, one
obtains a homology theory

ΩSO,Σ
∗ [ 12 ](·)

with coefficient ring

ΩSO,Σ
∗ [ 12 ](point) = ΩSO

∗ [ 12 ]/I∗
∼−→ M∗,

where
M∗ = Z[ 12 ][δ, ε].

Moreover, since 2 has been inverted, one obtains a multiplicative homology
theory and a multiplicative natural transformation

ΩSO
∗ (·)[ 12 ] → ΩSO,Σ

∗ [ 12 ](·),
since the obstructions to the existence of a product with these properties are
2-primary [Mr] .
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We shall write
M∗(·) = ΩSO,Σ

∗ [ 12 ](·),
and so have constructed a homology theory with coefficient ring M∗. By local-
ization, one can obtain further homology theories with coefficient rings (1.1), as
was indicated in the introduction. However, this is such a general construction
that one should seek further evidence that we have defined an important class
of homology theories.

4. Applying the exact functor theorem to localizations of Z[ 12 ][δ, ε]

4.1. The natural setting for the exact functor theorem is complex bordism
theory ΩU

∗ (·), whose coefficient ring ΩU
∗ has already been mentioned in §2 in

connection with formal groups. Let ϕ : ΩU
∗ → R be a ring homomorphism to a

graded commutative ring with unit, classifying a formal group F (x, y) over R.
We view R as an ΩU

∗ -module via ϕ, and ask if

ΩU
∗ (·)⊗ΩU∗ R

is a homology theory; when this is the case, we obtain a multiplicative homology
theory with coefficient ring R.

To the formal group F over R, we attach the power series

[n](x) = nx + . . .

given by [n](x) = F ([n− 1](x), x) for all n ∈ Z. For each prime p we write

[p](x) = px + · · ·+ u1x
p + · · ·+ unxpn

+ · · · .

In case R is a field of characteristic p, the formal group F is said to have height
h if ui = 0 in R for i < h and uh 6= 0. For the universal formal group FU over
ΩU
∗ , the element un belongs to ΩU

2(pn−1).
In order that ΩU

∗ (·)⊗ΩU∗ R be a homology theory, it is only necessary that
exactness be preserved by tensoring with R. There is a criterion for this to hold.

Exact Functor Theorem 4.2 ([L1]). In order that ΩU
∗ (·)⊗ΩU∗ R be a ho-

mology theory, it suffices that for each prime p, the sequence p, u1, . . . , un, . . . of
elements in ΩU

∗ be a regular sequence on R. That is, we require that multiplica-
tion by p on R, and by un on R/(pR + · · ·+ un−1R) for n ≥ 1, be injective.

Remarks 4.3. a. We can just as well state the criterion in terms of the
sequence p, u1, . . . , un, . . . of elements of R assigned to the formal group over R.

b. The exact functor theorem also applies to modules over ΩU
∗ , with the same

statement.
c. The converse to the exact functor theorem has been proved by Rudyak

[Ru].
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d. The proof of the exact functor theorem makes use of stable operations in
complex bordism theory, and the determination of the prime ideals in ΩU

∗ which
are invariant under these operations.

4.4. It is well-known that the evident forgetful natural transformation

ΩU
∗ (·) → ΩSO

∗ (·)
induces an isomorphism

ΩU
∗ (·)⊗ΩU∗ ΩSO

∗ [ 12 ] ∼−→ ΩSO
∗ (·)[12 ].

For one proof, see [L1, p. 598]. It follows that, with

ϕ : ΩSO
∗ → M∗ = Z[ 12 ][δ, ε]

a universal elliptic genus, we have

ΩU
∗ (·)⊗ΩU∗ M∗ ∼= ΩSO

∗ (·)⊗ΩSO∗ M∗.

Thus, for the proof of Theorem 1.2, it will suffice to show that the criterion of the
exact functor theorem applies to the localizations (1.1), with the formal group
FE(x, y) of Euler understood.

4.5. We begin with R = M∗[∆−1]. We need to check the criterion for all
odd primes, since it is clear for p=2. With p an odd prime, we shall show that
p, u1, u2 is a regular sequence on R, with u2 a unit in

R/(pR + u1R).

Plainly, p acts injectively on R, and so we next consider the action of u1 on

Fp [δ, ε, ∆−1].

We now refer to [L3], where a thorough study has been made of the issues at
stake here. Writing

(1− 2δx2 + εx4)−
1
2 =

∑

n≥0

Pn(δ, ε)x2n,

we have
u1 ≡ P(p−1)/2(δ, ε) mod p

([L3, (1.2)]). Note that Pn(1, 1) = 1 for all n, so certainly u1 6≡ 0 mod p.
We next argue that u2 is a unit in

Z [δ, ε, ∆−1]/(p, u1).

If u2 were not a unit in this ring, it would lie in a maximal ideal. Hence we
would obtain a field K of characteristic p and an elliptic curve in Jacobi quartic
form

y2 = 1− 2δx2 + εx4
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over K, for which the corresponding formal group law has u1 = u2 = 0. But it is
well-known ([Si, Cor. IV.7.5]) that the height of the formal group of an elliptic
curve over a field of characteristic p>0 is 1 or 2; i.e., if u1 = 0 then u2 6= 0. This
contradiction completes the proof in this case.

4.6. More explicitly, we have congruences modulo (p, u1):

u2 ≡ (−1)(p−1)/2ε(p2−1)/4,

(δ2 − ε)(p
2−1)/4 ≡ ε(p2−1)/4;

see [L3, Thm. 1] and the following discussion. Recalling that

∆ = ε(δ2 − ε)2,

we see that u2 is a unit in

Z [δ, ε, ∆−1]/(p, u1),

as required.
Moreover, we see that modulo (p, u1), inverting δ2 − ε is equivalent to invert-

ing ε, and so also to inverting the discriminant ∆. Thus in both M∗[ε−1] and
M∗[(δ2−ε)−1] , we see that p, u1, u2 is a regular sequence with u2 a unit modulo
(p, u1). Hence the exact functor theorem applies to these localizations of M∗ as
well, completing the proof of Theorem 1.2. ¤

4.7. In the previous section, we used bordism with singularities to construct
a homology theory M∗(·) and a natural transformation

Φ : ΩSO
∗ (·) → M∗(·)

extending the universal elliptic genus

ϕ : ΩSO
∗ → M∗ .

In view of Theorem 1.2, this leads to a natural transformation

ΩSO
∗ (·)⊗ΩSO∗ M∗[∆−1] → M∗(·)[∆−1]

between homology theories, which is an isomorphism on coefficient rings. By the
comparison theorem for homology theories (easily proved by induction on the
number of cells for finite complexes, and then by taking direct limits for arbitrary
CW-complexes) we obtain an isomorphism of homology theories. Evidently,
we obtain the same conclusion by inverting merely ε or δ2 − ε. Thus we have
established Conner-Floyd theorems for all the periodic elliptic homology theories
obtained by localization from M∗(·).
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4.8. We turn to relations to KO-theory with 2 inverted. We choose to deal
with KO-homology, which has period 4 when one inverts 2. The coefficient ring
is

KO∗[ 12 ] = Z[ 12 ][γ, γ−1]

with γ of degree 4.

Proposition 4.9. There are natural transformations

νs : ΩSO
∗ (·)⊗ΩSO∗ M∗[ε−1] → KO∗(·)[ 12 ]

νd : ΩSO
∗ (·)⊗ΩSO∗ M∗[(δ2 − ε)−1] → KO∗(·)[ 12 ]

so that on coefficient rings the compositions

ΩSO
∗

ϕ−→ M∗[ε−1] νs−→ KO∗[ 12 ] = Z[ 12 ][γ, γ−1](4.10)

ΩSO
∗

ϕ−→ M∗[(δ2 − ε)−1] νd−→ KO∗[ 12 ] = Z[ 12 ][γ, γ−1](4.11)

send a bordism class [M4n] to sign(M4n)γn and to Â(M4n)γn, respectively.

Proof. There are well-known natural transformations

µd : ΩSpin
∗ (·) → KO∗(·)

µs : ΩSO
∗ (·) → KO∗(·)[ 12 ]

due to Atiyah and Milnor [Mi] and to Sullivan [Su], which on coefficient rings
send a bordism class [M4n] to Â(M4n)γn and sign(M4n)γn, respectively. Fur-
ther, µd and µs induce natural equivalences

µ̃d : ΩSpin
∗ (·)⊗ΩSpin

∗
KO∗[ 12 ] ∼−→ KO∗(·)[ 12 ],

µ̃s : ΩSO
∗ (·)⊗ΩSO∗ KO∗[ 12 ] ∼−→ KO∗(·)[ 12 ];

see [CF2] for the first of these (they really used symplectic bordism, but ΩSp
∗ →

ΩSpin
∗ becomes an isomorphism when 2 is inverted), and [L1, Ex. 3.4] for the

second.
Next, define ring homomorphisms

νs : M∗[ε−1] → Z[ 12 ][γ, γ−1], δ 7→ γ, ε 7→ γ2;

νd : M∗[(δ2 − ε)−1] → Z[ 12 ][γ, γ−1], δ 7→ − 1
8γ, ε 7→ 0.

These extend to

νs : ΩSO
∗ (·)⊗ΩSO∗ M∗[ε−1] → ΩSO

∗ (·)⊗ΩSO∗ KO∗[ 12 ],

νd : ΩSO
∗ (·)⊗ΩSO∗ M∗[(δ2 − ε)−1] → ΩSO

∗ (·)⊗ΩSO∗ KO∗[ 12 ].

Viewing µ̃s and µ̃d as identifications, we obtain the desired natural transforma-
tions from elliptic homology to KO-theory with 2 inverted.

The composition (4.10) is an elliptic genus sending CP2 to γ and HP2 to γ2,
hence sends M4n to sign(M4n)γn. Similarly, the composition (4.11) is an elliptic
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genus killing HP2 and sending CP2 to − 1
8γ = Â(CP2)γ, thus sending M4n to

Â(M4n)γn. ¤

4.12. We can obtain further periodic homology theories, corresponding to
the Weierstrass equations (1.3) and (1.4)

y2 = 4x3 − g2x− g3

y2 + a1xy + a3y = x3 + a2x
2 + a1x + a6,

the homogeneous Legendre normal form

y2 = x(x− λ)(x− µ),

and the homogeneous Deuring normal form

y2 + αxy + βy = x3

([Si, p. 327]). In these cases, the coefficient rings are

Z[ 16 ][g2, g3,∆−1],

Z [a1, a2, a3, a4, a6, ∆−1],

Z[ 12 ][λ, µ, ∆−1],

Z[ 13 ][α, β, ∆−1].

(For the Legendre form, wt λ = wt µ = 2 and ∆ = 16λ2µ2(λ − µ)2; for the
Deuring form, wtα = 1, wtβ = 3 and ∆ = β3(α3− 27β).) In all cases, we apply
the exact functor theorem, using the formal group as given in [Si, Ch. IV] to
make the desired coefficient ring an algebra over ΩU

∗ .
For example, consider the classical Weierstrass form (1.3). We must show

that the exact functor theorem applies to Z[ 16 ][g2, g3, ∆−1], and so need only
consider primes p>3. Plainly p is not a zero-divisor, so we next consider u1 (the
Hasse invariant) in Fp[g2, g3, ∆−1]. It is well-known that u1 6≡ 0 mod p, since
otherwise all elliptic curves in characteristic p would be supersingular! Next, we
can argue that u2 is a unit in

Fp[g2, g3,∆−1],

exactly as at the end of §4.5 above; indeed, a more precise result, that

u2 ≡ (−1)(p−1)/2∆(p2−1)/12 mod (p, u1),

has been obtained in [L3].
The argument is the same for the other normal forms. Note that we need not

invert any primes if we use the general Weierstrass equation (1.4), at the price
of having to permit all five coefficients to appear as indeterminates.
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5. Modular forms for Γ0(2)

We begin with some preliminaries on modular forms and modular functions,
referring to [K, Ch. III] for background and further information.

5.1. Write Γ = SL2(Z) for the modular group, and put

Γ0(2) =
{(

a b

c d

)
∈ Γ : c ≡ 0 mod 2

}
.

Γ0(2) is a subgroup of Γ of index 3, not normal and having as conjugates

Γ0(2) =
{(

a b

c d

)
∈ Γ : b ≡ 0 mod 2

}

and the “theta group”

Γθ = all
(

a b

c d

)
∈ Γ congruent to ±

(
1 0
0 1

)
or to ±

(
0 1
1 0

)
mod 2.

Γ0(2) acts on the upper half-plane H by
(

a b

c d

)
τ =

aτ + b

cτ + d
;

a fundamental domain has been given in the introduction, namely

{ z : Im z > 0, 0 < Re z < 1, |z − 1
2 | > 1

2 }.

Note that
(

1 1

0 1

)
∈ Γ0(2), corresponding to τ 7→ τ + 1. Γ0(2) has the two cusps

0 and ∞.

5.2. By a modular function of integer weight k for Γ0(2), one means a mero-
morphic function f : H → C satisfying

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for
(

a b

c d

)
∈ Γ0(2) and τ ∈ H, as well as the following conditions at the cusps.

Since
(

1 1

0 1

)
∈ Γ0(2) we have f(τ + 1) = f(τ), so can write

f(τ) =
∞∑
−∞

anqn (q = e2πiτ );

we require that for some n0, an = 0 if n < n0, i.e. f is meromorphic at ∞.
Further, g(τ) := τ−kf(−1/τ) satisfies g(τ + 2) = g(τ) so we can write

τ−kf(−1/τ) =
∞∑
−∞

bnq2
n (q2 = eπiτ );
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we require that for some n0, bn = 0 if n < n0, i.e. f is meromorphic at the cusp
τ =0. One refers to these series as the q-expansions of f at the cusps ∞ and 0.
It is customary to identify f with its q-expansion at ∞.

We call f a modular form of integral weight k ≥ 0 for Γ0(2) if f is holomorphic
on H and at the cusps:

f(τ) =
∑

n≥0

anqn,

τ−kf(−1/τ) =
∑

n≥0

bnq2
n.

We write Mk(Γ0(2)) for the vector space of modular forms for Γ0(2) of weight
k; it is zero for k odd, since −

(
a b

c d

)
belongs to Γ0(2) when

(
a b

c d

)
does. The

modular forms give rise to a graded ring M∗(Γ0(2)).

5.3. The work of a number of authors has led to a consensus that the fun-
damental elliptic genus takes its values in M∗(Γ0(2)); see [LS, CC, Z]. That is,
one can construct an elliptic genus

ϕ : ΩSO
∗ → Q [[q]]

whose values on any bordism class [M4k] is a modular form for Γ0(2) of weight
2k, with constant term Â(M4k). In fact, the q-expansion coefficients all lie in
Z[ 12 ], and are integral when M4k is a spin manifold. One has precise additive
formulas for the parameters δ and ε ([Z]):

δ = − 1
8 − 3

∑

n≥1

( ∑

d|n
d odd

d

)
qn,

ε =
∑

n≥1

( ∑

d|n
n
d odd

d3

)
qn;

these are modular forms of weights 2 and 4, respectively, which are algebraically
independent and satisfy

M∗(Γ0(2)) = C[δ, ε].

5.4. We shall now express δ and ε in terms of theta constants, and so obtain
infinite product expansions for ε, δ2 − ε and the discriminant ∆ = ε(δ2 − ε)2.
This discussion relies heavily on Chapter V in [Cn], dealing with theta functions.
For a related treatment, see [L2, §4] and [L3, §5].

Viewing τ as a parameter in the upper half-plane, Zagier ([Z]) shows that
s(u) = s(u; τ) := g−1(u) (recall that g−1(u) is the inverse under composition of
the logarithm u = g(x) of the elliptic genus) is an odd elliptic function of order
2 with period lattice

4πi(Z + Zτ)



PERIODIC COHOMOLOGY THEORIES DEFINED BY ELLIPTIC CURVES 17

satisfying s′(0) = 1 and

s′(u)2 = 1− 2δ(τ)s(u)2 + ε(τ)s(u)4.

s(u) has simple zeros at u=0 and u=2πi, and simple poles at 2πiτ and 2πi(1+τ).
Now let ℘ be the Weierstrass function for the same lattice, and put

ω1 = 4πi, ω2 = 4πiτ,

so that τ = ω2/ω1 and the lattice is generated by ω1 and ω2. Then ℘ has the
half-period values

e1 = ℘(ω1/2) = ℘(2πi)

e2 = ℘(ω2/2) = ℘(2πiτ)

e3 = ℘(ω3/2) = ℘(2πi(1 + τ)),

where ω3 = ω1 +ω2 and e1 + e2 + e3 = 0. One sees easily, by comparing divisors,
that

s(u) = −2
℘(u)− e1

℘′(u)
.

Lemma 5.5. One has

δ = 3e1

ε = (e2 − e3)2

δ2 − ε = 4(e1 − e2)(e1 − e3)

∆ = 16(e1 − e2)2(e1 − e3)2(e2 − e3)2,

where ∆ = ε(δ2 − ε)2.

This is proved by a straightforward comparison of coefficients of s(u) and
℘(u), and is left to the reader (see [L3, §5]). The expression for the discriminant
is classical.

We now follow Chandrasekharan [Cn], still taking q = e2πiτ rather than
q = eπiτ as in [Cn, Ch. V]. The theta constants θ1(τ), θ2(τ) and θ3(τ) have the
q-expansions

θ1 = 2q1/8
∑

n≥0

qn(n+1)/2

θ2 = 1 + 2
∑

n≥1

(−1)nqn2/2

θ3 = 1 + 2
∑

n≥1

qn2/2
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and the infinite product representations (for |q| < 1)

θ1 = 2q1/8
∏

n≥1

(1− qn)(1 + qn)2

θ2 =
∏

n≥1

(1− qn)(1− q(2n−1)/2)2

θ3 =
∏

n≥1

(1− qn)(1 + q(2n−1)/2)2.

In terms of the θi’s we have [Cn, p. 69])

e2 − e1 =
1
16

θ3
4(τ)

e3 − e1 =
1
16

θ2
4(τ)

e2 − e3 =
1
16

θ1
4(τ),

from which one can observe the well-known relation

θ1
4 + θ2

4 = θ3
4.

It follows at once that

e1 = − 1
48

(θ2
4 + θ3

4).

In view of the lemma, we conclude that

Proposition 5.6. One has

δ = − 1
16

(θ2
4 + θ3

4),

ε =
1

256
θ1

8,

δ2 − ε =
1
64

θ2
4θ3

4.

We further obtain the infinite product representations:

Proposition 5.7. One has

ε = q

∞∏
n=1

{
(1− qn)(1 + qn)2

}8
,

δ2 − ε =
1
64

∞∏
n=1

{
(1− qn)(1− q2n−1)

}8
,

∆ = 2−12q

∞∏
n=1

(1− qn)24.
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Since q = e2πiτ , we see that ∆ = ε(δ2 − ε)2 is nonzero for all τ ∈ H. The
behavior at the cusp τ = ∞ (i.e., q = 0) is clear; the elliptic genus degenerates
to the Â-genus.

The behavior at the other cusp, τ =0, follows from the formulas ([Cn, p. 75])

θ1(τ) =
√

i/τ θ2(−1/τ)

θ2(τ) =
√

i/τ θ1(−1/τ)

θ3(τ) =
√

i/τ θ3(−1/τ).

In view of Proposition 5.6, we find that

τ−2δ(−1/τ) =
1
16

(θ1(τ)4 + θ3(τ)4),

τ−4ε(−1/τ) =
1

256
θ2(τ)8,

τ−4(δ2 − ε)(−1/τ) =
1
64

θ1(τ)4θ3(τ)4;

these have constant terms 1/16, 1/256 and 0 respectively. Hence the elliptic
genus degenerates (essentially) to the L-genus at this cusp.

5.8. We finally turn to the proof of Theorem 1.5, which was stated in the
introduction. We begin by identifying M∗ = Z[ 12 ][δ, ε] as a subring of M∗(Γ0(2)).
For any ring R with Z ⊂ R ⊂ Q we denote by

MR
∗ (Γ0(2))

the set of all f ∈ M∗(Γ0(2)) whose homogeneous components have q-expansion
coefficients in R. Evidently, 8δ and ε lie in MZ

∗ (Γ0(2)), in view of the formulas

in §5.3. Hence each modular form in M∗ lies in MZ[ 12 ]
∗ (Γ0(2)). That these rings

coincide follows from the

Proposition 5.9. For any ring R with Z ⊂ R ⊂ Q we have

MR
∗ (Γ0(2)) = R[8δ, ε].

Proof. In one direction, this is clear from what has been noted. Conversely,
let f ∈ MR

2k(Γ0(2)) and write

f =
[k/2]∑

l=0

al(−8δ)k−2lεl,

in which the individual terms have q-expansions beginning with alq
l. By induc-

tion on l, it is immediate that each al lies in R. ¤
We next identify M∗[∆−1] as a ring of modular functions for Γ0(2). Note

first that ε has a simple zero at τ =∞, and is otherwise nonzero on H∪ {0,∞}.
Similarly, δ2−ε has a simple zero at τ =0, and is otherwise nonzero onH∪{0,∞}.
Thus, the only zeros of ∆ occur at the cusps.



20 P. S. LANDWEBER, D. C. RAVENEL AND R. E. STONG

Hence, each element of M∗[∆−1] is a modular function with q-expansion
coefficients in Z[ 12 ], and is holomorphic on H (its only possible poles being at
the cusps).

Conversely, if f is a modular function which is holomorphic on H, then f∆N

is a modular form for some integer N ≥ 0. And if all q-expansion coefficients of
f lie in Z[ 12 ], the same is true of f∆N , so that f∆N lies in M∗ and f ∈ M∗[∆−1].

Similarly, each element of M∗[ε−1] is a modular function with q-expansion
coefficients in Z[ 12 ], which is holomorphic on H∪{0} (it may have a pole at ∞).
Conversely, if f is such a modular function then fεN is a modular form and so
lies in M∗, for some n ≥ 0, whence f ∈ M∗[ε−1].

Finally, in the same way one sees that M∗[(δ2 − ε)−1] consists of all mod-
ular functions with q-expansion coefficients in Z[ 12 ], which are holomorphic on
H∪{∞}. ¤

Remark 5.10. The modular functions of weight zero in M∗[∆−1],M∗[ε−1]
and M∗[(δ2−ε)−1] are easily characterized as: Laurent polynomials in (δ2−ε)/ε,
polynomials in (δ2 − ε)/ε, and polynomials in ε/(δ2 − ε), respectively, the coef-
ficients of these polynomials being in Z[ 12 ].
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