
ELLIPTIC COHOMOLOGY: A HISTORICAL OVERVIEW

CORBETT REDDEN

The goal of this overview is to introduce concepts which underlie elliptic cohomology and reappear
in the construction of tmf . We begin by defining complex-oriented cohomology theories and looking
at the two special cases of complex cobordism and K-theory. We then see that a complex orientation
of a cohomology theory naturally leads to a formal group law. Furthermore, Quillen’s theorem states
that the universal complex-oriented theory (complex cobordism) encodes the universal formal group
law. This implies that complex genera, or homomorphisms from the complex cobordism ring to a
ring R, are equivalent to formal group laws over R. The group structure on an elliptic curve naturally
leads to the notion of an elliptic genus. Finally, we use the Landweber exact functor theorem to
produce an elliptic cohomology theory whose formal group law is given by the universal elliptic
genus.

Elliptic cohomology was introduced by Landweber, Ravenel, and Stong in the mid-1980’s as a co-
homological refinement of elliptic genera. The notion of elliptic genera had previously been invented
by Ochanine to address conjectured rigidity and vanishing theorems for certain genera on manifolds
admitting non-trivial group actions. Witten played an important role in this process by using intu-
ition from string theory to form many of these conjectures. He subsequently interpreted the elliptic
genus as the signature of the free loop space of a spin manifold, beginning a long and interesting
interaction between theoretical physics and algebraic topology that is still active today. While we
don’t have the space to adequately tell this story, there are already several excellent references:
the introductory article in [Lan] gives the history of elliptic genera and elliptic cohomology, [Seg]
explains how they should be related to more geometric objects, and [Hop] summarizes important
properties of tmf . Finally, both [Lur] and [Goe] give a detailed survey of elliptic cohomology and
tmf from the more modern perspective of derived algebraic geometry.

1. Complex-oriented cohomology theories

A generalized cohomology theory E is a functor from (some subcategory of) topological spaces to
the category of abelian groups. This functor must satisfy all the Eilenberg–Steenrod axioms except
for the dimension axiom, which states the cohomology of a point is only non-trivial in degree 0.
Any cohomology theory is represented by a spectrum which we also call E, and from a spectrum
the reduced homology and cohomology groups of a finite CW complex X are given by

Ẽn(X) = lim
k→∞

πn+k(X ∧ Ek),

Ẽn(X) = lim
k→∞

[ΣkX,En+k].

The coefficient groups are abbreviated by E∗ = E∗(pt) and E∗ = E∗(pt), and they are naturally
related by π∗E = E∗ ∼= E−∗. We restrict to theories with a graded commutative ring structure
Ei(X)×Ej(X)→ Ei+j(X) analogous to the cup product in ordinary cohomology. They are known
as multiplicative cohomology theories and are represented by ring spectra.

Example 1.1 (Cobordism). A smooth closed (compact with no boundary) manifold M is said to be
null-bordant if there exists a compact manifold W whose boundary is M . A singular manifold (M,f)
in X, where f : M → X is a continuous map, is null-bordant if there exists a singular manifold
(W,F ) with boundary (M,f). The n-th unoriented bordism group of X, denoted by ΩOn (X), is the
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set of smooth closed singular n-manifolds in X modulo null-bordism; the group structure is given
by the disjoint union of manifolds.

Let {Gk} be a sequence of topological groups with representations {Gk
ρk→ O(k)} which are

compatible with the inclusion maps. We define a G-structure on M as a stable lift of the structure
groups to Gk for the stable normal bundle νM . Suppose a manifold W with ∂W = M has a
G-structure on νW that extends to the G-structure on νM . This is considered a null-bordism of
M as a G-manifold. The abelian group ΩGn (X) is then defined as before; it is the set of smooth
closed singular n-manifolds on X with G-structure on ν, modulo null-bordism. Up to homotopy,
G-structures on the stable tangent bundle and stable normal bundle are equivalent; we later use
this fact in geometric constructions.

The functors ΩG∗ are examples of generalized homology theories, and the Pontryagin–Thom con-
struction shows they are represented by the Thom spectra MG = {MGk} = {Th(ρ∗kξk)}. Here,
ξk → BO(k) is the universal k-dimensional vector bundle (ξk = EO(k)×O(k) Rk), and for any vector
bundle V → X the Thom space Th(V ) is defined as the unit disc bundle modulo the unit sphere
bundle D(V )/S(V ). Particularly common examples of G-bordism include oriented bordism, spin
bordism, and complex bordism, corresponding to the groups SO(k), Spin(k), and U(k), respec-
tively. Bordism classes in these examples have an orientation, spin structure, or complex structure
on the manifold’s stable normal bundle (or stable tangent bundle).

The spectrum MG defines a generalized cohomology theory known as G-cobordism. It is also a
multiplicative cohomology theory (assuming there are maps Gk1 ×Gk2 → Gk1+k2 compatible with
the orthogonal representations). The coefficient ring of MG is simply the bordism ring of manifolds
with stable G-structure,

MG−∗(pt) ∼= MG∗(pt) = ΩG∗ ,
and the product structure is induced by the product of manifolds. Of particular interest to us will
be oriented cobordism and complex cobordism. The first coefficient calculation is due to Thom, and
the second is from Thom, Milnor, and Novikov:

MSO∗ ⊗Q ∼= Q[[CP2], [CP4], . . .](1)

MU ∗ ∼= Z[a1, a2, . . .]; |ai| = −2i.

Rationally, MU∗ ⊗Q is generated by the complex projective spaces CPi for i ≥ 1. The book [Sto]
is an excellent source of further information on cobordism.

Example 1.2 (Complex K-theory). Isomorphism classes of complex vector bundles over a space
X form an abelian monoid via the direct sum ⊕ operation. Formally adjoining inverses gives the
associated Grothendieck group known asK(X) orK0(X); elements inK(X) are formal differences of
vector bundles up to isomorphism. The reduced group K̃0(X) is naturally isomorphic to [X,Z×BU ],
and Bott periodicity gives a homotopy equivalence Ω2(Z×BU) ' Z×BU . Therefore, we can extend
Z×BU to an Ω-spectrum known as K, where

K2n = Z×BU,
K2n+1 = Ω(Z×BU) ' U.

This defines the multiplicative cohomology theory known as (complex) K-theory, with ring structure
induced by the tensor product of vector bundles. A straightforward evaluation shows that the
coefficients π∗K are

K2n(pt) ∼= π0(Z×BU) = Z,
K2n+1(pt) ∼= π0(U) = 0.

Furthermore, Bott periodicity is manifested in K-theory by the Bott class β = [ξ] − 1 ∈ K̃(S2) ∼=
K−2(pt), where ξ → S2 is the Hopf bundle and 1 is the isomorphism class of the trivial line bundle.
The class β is invertible in K∗, and multiplication by β and β−1 induces the periodicity in general
rings K∗(X).
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The periodicity in K-theory turns out to be a very convenient property, and it motivates the
following definition.

Definition 1.3. A multiplicative cohomology theory E is even periodic if Ei(pt) = 0 whenever i is
odd and there exists β ∈ E−2(pt) such that β is invertible in E∗(pt).

The existence of β−1 ∈ E2(pt) implies that for general X there are natural isomorphisms

E∗+2(X)

·β
++
E∗(X)

·β−1

∼=ll
.

given by multiplication with β and β−1, so E is periodic with period 2.
A number of cohomology theories, such as ordinary cohomology, are even (i.e. Eodd(pt) = 0) but

not periodic. Given an arbitrary even cohomology theory, we can create an even periodic theory A
by defining

An(X) :=
∏
k∈Z

En+2k(X).

For example, if we perform this construction on ordinary cohomology with coefficients in a ring R,
we obtain a theory known as periodic ordinary cohomology. The coefficients of MU in (1) show
that MU also is even but not periodic. We define periodic complex cobordism MP by

MPn(X) :=
∏
k∈Z

MU n+2k(X),

Letting |β| = −2, we could equivalently define MPn(X) ⊂ MU ∗(X)Jβ, β−1K as formal series which
are homogeneous of degree n.

Definition 1.4. In E-cohomology, a Thom class for the vector bundle V → X (with dimR V = n)
is a class UV ∈ Ẽn(Th(V )) such that for each x ∈ X there exists ϕx : Rn → Vx so that UV 7→ 1
under the following composition:

Ẽn(Th(V )) // Ẽn(Th(Vx))
∼=
ϕ∗x

// Ẽn(Sn)
∼= // E0(pt)

UV � // 1

Thom classes give rise to Thom isomorphisms

E∗(X) ·UV→ Ẽ∗+n(Th(V )).

The existence of Thom isomorphisms allows one to construct pushforward maps in cohomology
theories, which in turn gives important invariants generalizing the Euler class. Ordinary cohomology
with Z/2 coefficients admits Thom classes for all vector bundles, but only oriented bundles have
Thom classes in H∗(−; Z). In general, we would like to functorially define Thom classes compatible
with the ⊕ operation. Such a choice for vector bundles with lifts of the structure group to Gk is
called a G-orientation of the cohomology theory E, and E is said to be G-orientable if there exists
such an orientation. A specific orientation will be given by universal Thom classes in Ẽn(MGn)
and is equivalent (at least up to homotopy) to a map of ring spectra MG → E. We will mostly
be concerned with complex orientable theories, and summarizing the above discussion gives the
following definition.

Definition 1.5. A complex orientation of E is a natural, multiplicative, collection of Thom classes
UV ∈ Ẽ2n(Th(V )) for all complex vector bundles V → X, where dimC V = n. More explicitly, these
classes must satisfy

• f∗(UV ) = Uf∗V for f : Y → X,
• UV1⊕V2 = UV1 · UV2 ,
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• For any x ∈ X, the class UV maps to 1 under the composition1

Ẽ2n(Th(V ))→ Ẽ2n(Th(Vx))
∼=→ Ẽ2n(S2n)

∼=→ E0(pt).

Given a complex orientation, we can define Chern classes in the cohomology theory E. Because
the zero-section CP∞ → ξ induces a homotopy equivalence CP∞ ∼→ Th(ξ), the universal Thom
class for line bundles is naturally a class c1 ∈ Ẽ2(CP∞), and it plays the role of the universal first
Chern class. If one computes E∗(CP∞), the existence of c1 implies the Atiyah–Hirzebruch spectral
sequence must collapse at the E2 page. This implies the first part of the following theorem.

Theorem 1.6. A complex orientation of E determines an isomorphism

E∗(CP∞) ∼= E∗(pt)Jc1K,

and such an isomorphism is equivalent to a complex orientation. Furthermore, any even periodic
theory is complex orientable.

In addition to the above proposition, the splitting principle carries over, and the class c1 uniquely
determines isomorphisms

E∗(BU(n)) ∼= (E∗(CP∞ × · · · × CP∞))Σn ∼=
(
E∗(pt)Jx1, · · · , xnK

)Σn

∼= E∗(pt)Jc1, · · · , cnK,

where ck ∈ E2k(BU(n)) is the k-th elementary symmetric polynomial in the variables xi. This gives
us a theory of Chern classes analogous to the one in ordinary cohomology.

2. Formal group laws and genera

A complex orientation of E determines Chern classes for complex vector bundles. As in ordi-
nary cohomology, the Chern classes satisfy the properties of naturality and additivity. In ordinary
cohomology, the first Chern class of a product of line bundles is given by

c1(L1 ⊗ L2) = c1(L1) + c1(L2).

For a general complex-oriented cohomology theory, this relation no longer holds and leads to an
interesting structure.

The universal tensor product is classified by

ξ ⊗ ξ //

��

ξ

��
CP∞ × CP∞ // CP∞.

The induced map in cohomology,

E∗(CP∞)⊗ E∗(CP∞)←−E∗(CP∞)

F (x1, x2)←− [c1
where F (x1, x2) is a formal power series in two variables over the ring E∗, gives the universal formula

c1(L1 ⊗ L2) = F (c1(L1), c1(L2)).

This formal power series F is an example of a formal group law over the graded ring E∗.

Definition 2.1. A formal group law over a ring R is a formal power series F ∈ RJx1, x2K satisfying
the following conditions:

• F (x, 0) = F (0, x) = x (Identity)
• F (x1, x2) = F (x2, x1) (Commutativity)
• F (F (x1, x2), x3) = F (x1, F (x2, x3)) (Associativity)

If R is a graded ring, we require F to be homogeneous of degree 2 where |x1| = |x2| = 2.

1The complex structure induces an orientation on Vx, hence there is a canonical homotopy class of map ϕx : R2n → Vx.
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One easily verifies that the power series giving c1(L1 ⊗ L2) is a formal group law. The three
properties in the definition follow immediately from the natural transformations which give the
identity, commutativity, and associativity properties of the tensor product.

Example 2.2. As noted above, the formal group law obtained from ordinary cohomology is F+ =
F (x1, x2) = x1 + x2, and is known as the additive formal group law.

Example 2.3. The multiplicative formal group law is defined by

F×(x1, x2) = x1 + x2 − x1x2.

One can explicitly verify it satisfies the definition of a formal group law. One can also see that it
is obtained from the standard complex orientation of K-theory. Since K-theory is even periodic,
we place the classes c1 in degree 0. The resulting formal group law is over the ring K0(pt) = Z
and involves no grading. (Though, we could use the Bott element and its inverse to maintain the
grading |c1| = 2 if we wish.)

To the universal line bundle ξ → CP∞, we define the universal first Chern class to be 1 − [ξ] ∈
K0(CP∞). The term 1 is included so that trivial bundles have trivial first Chern class. Hence, for
any line bundle L→ X,

c1(L) = 1− [L] ∈ K0(X).

A simple calculation demonstrates

c1(L1 ⊗ L2) = 1− L1 ⊗ L2

= (1− L1) + (1− L2)− (1− L1)(1− L2)

= c1(L1) + c1(L2)− c1(L1)c1(L2),

demonstrating that the multiplicative formal group law is obtained from K-theory.

Any ring homomorphism R → S induces a map of formal group laws FGL(R) → FGL(S).
In fact, there is a universal formal group law Funiv ∈ RunivJx1, x2K such that any F ∈ FGL(R)
is induced by a ring homomorphism Runiv → R. The existence of Runiv is easy, since one can
construct it formally by

Runiv = Z[aij ]/ ∼

where aij is the coefficient of xi1x
j
2, and ∼ represents all equivalence relations induced by the three

axioms of a formal group law. Though this description is quite unwieldy, a theorem by Lazard shows
that this ring is isomorphic to a polynomial algebra; i.e.

Runiv ∼= L := Z[a1, a2, . . .]

where |ai| = −2i if we include the grading.
A complex orientation of E therefore induces a map L → E∗ defining the formal group law.

Earlier we noted that complex orientations are basically equivalent to maps of ring spectra MU → E,
so MU has a canonical complex orientation given by the identity map MU → MU . The following
important theorem of Quillen shows that in addition to MU being the universal complex oriented
cohomology theory, it is also the home of the universal formal group law. It also explains the grading
of the Lazard ring.

Theorem 2.4. (Quillen) The map L → MU ∗ induced from the identity map MU → MU is an
isomorphism.

To summarize, we have maps

{MU ∗ → E∗ }
OO
Quillen

��
{MU → E }

22

,,
FGL(E∗)
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where E∗ can be any graded ring. Given a formal group law, can we construct a complex oriented
cohomology theory with that formal group law? We will return to this question in Section 4 and
see that in certain cases we can construct such a cohomology theory.

First, we discuss formal group laws from the slightly different viewpoint of complex genera. A
genus is some multiplicative bordism invariant associated to manifolds. There are two main types
of genera, and this is due to the description of the cobordism groups from (1).

Definition 2.5. A complex genus is a ring homomorphism

ϕ : MU ∗ → R.

An oriented genus (or usually just genus) is a ring homomorphism

ϕ : MSO∗ ⊗Q→ R,

where R is a Q-algebra. More explicitly, ϕ(M) only depends on the cobordism class of M and
satisfies

ϕ(M1 tM2) = ϕ(M1) + ϕ(M2), ϕ(M1 ×M2) = ϕ(M1)ϕ(M2).

Quillen’s theorem implies there is a 1-1 correspondence between formal group laws over R and
complex genera over R. We introduce some common terminology which will make this correspon-
dence more concrete.

First, a homomorphism between formal group laws F
f→ G (over R) is a power series f(x) ∈ RJxK

such that
f(F (x1, x2)) = G(f(x1), f(x2)).

If f is invertible then it is considered an isomorphism, and f is a strict isomorphism if f(x) = x+
higher order terms.

Example 2.6. We could have chosen complex orientation of K-theory so that c1(L) = [L] − 1 as
opposed to 1 − [L]. The resulting formal group law would have been F (x1, x2) = x1 + x2 + x1x2,
which is also sometimes defined as the multiplicative formal group law. These two formal group laws
are (non-strictly) isomorphic, with isomorphism given by f(x) = −x. Our original choice, though,
coincides with the Todd genus and with conventions in index theory.

Remark 2.7. In general, our formal group law depends on the particular complex orientation. Two
different orientations will lead to an isomorphism between the formal group laws. More abstractly,
to any complex orientable theory is canonically associated a formal group. The choice of orientation
gives a coordinate for the formal group, and the formal group expanded in this coordinate is the
formal group law.

Over a Q-algebra, any formal group law is uniquely (strictly) isomorphic to the additive formal
group law F+. We denote this isomorphism by logF and its inverse by expF :

F

logF **
F+

expF

ii

The isomorphism logF can be solved by the following:

f(F (x1, x2)) = f(x1) + f(x2)

∂

∂x2

∣∣∣∣
x,0

(f(F (x1, x2))) =
∂

∂x2

∣∣∣∣
x,0

(f(x1) + f(x2))

f ′(x)
∂F

∂x2
(x, 0) = 1

logF (x) = f(x) =
∫ x

0

dt
∂F
∂x2

(t, 0)
(2)
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Going from the third to fourth line involves inverting a power series, so one must work over a
Q-algebra. If R is torsion-free, then R ↪→ R ⊗ Q is an injection, and we lose no information in
considering logF instead of F itself.

Over the ring MU ∗ ⊗ Q, the universal formal group law FMU coming from complex cobordism
has the particularly nice logarithm

logFMU
(x) =

∑
n≥0

[CPn]
n+ 1

xn.

Therefore, a formal group law F (or a complex genus) induced by ϕ : MU ∗ → R has a logarithm

logF (x) =
∑
n≥0

ϕ([CPn])
n+ 1

xn.

While (modulo torsion in R) the logarithm encodes the value of a genus on any complex manifold, in
practice it is difficult to decompose the bordism class of a manifold into projective spaces. However,
there is an easier approach to calculating genera due to work of Hirzebruch.

Proposition 2.8. (Hirzebruch) For R a Q-algebra, there are bijections

{Q(x) = 1 + a1x+ a2x
2 + · · · ∈ RJxK} ←→ {ϕ : MU ∗ ⊗Q→ R}

{Q(x) = 1 + a2x
2 + a4x

4 + · · · ∈ RJxK | aodd = 0} ←→ {ϕ : MSO∗ ⊗Q→ R}

The first bijection is given by the following construction. Given Q(x), to a complex line bundle
L→ X assign the cohomology class

ϕQ(L) := Q(c1(L)) ∈ H∗(X;R).

Using the splitting principle, ϕQ extends to a stable exponential characteristic class on all complex
vector bundles. The complex genus ϕ generated by Q(x) is then defined by

ϕ(M) := 〈ϕQ(TM), [M ]〉 ∈ R,

where M is a stably almost complex manifold, 〈, 〉 is the natural pairing between cohomology and
homology, and [M ] is the fundamental class (an almost complex structure induces an orientation).
Going the other direction, the series Q(x) is related to the formal group law by

Q(x) =
x

expϕ(x)
,

where expϕ(x) is the inverse to logϕ(x). The second bijection follows in the same manner, but
one needs an even power series to define the stable exponential characteristic class for real vector
bundles.

Example 2.9 (K-theory and F×). From (2), the logarithm for the multiplicative formal group law
F×(x1, x2) = x1 + x2 − x1x2 is given by

log×(x) =
∫ x

0

dt

1− t
= − log(1− x).

Therefore,

exp×(x) = 1− e−x,

and the associated power series

Q×(x) =
x

exp×(x)
=

x

1− e−x
= 1 +

x

2
+
x2

12
− x4

720
+ · · · ∈ QJxK
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generates the Todd genus Td. When we evaluate the Todd genus on a Riemann surface M2 with
genus g,

Td(M2) = 〈Q(c1(TM)), [M ]〉 = 〈1 +
1
2
c1(TM) + · · · , [M ]〉

=
1
2
〈c1(TM), [M ]〉 = 1− g.

In this situation, the Todd genus recovers the standard notion of genus.
Note that even though we started with a Z-valued complex genus, the power series Q(x) has

fractional coefficients. If one is only given Q(x), it is quite surprising that Todd genus gives inte-
gers when evaluated on manifolds with an almost complex structure on the stable tangent bundle.
Another explanation for the integrality is given by the following important index theorem. In fact,
most of the common genera are equal to the index of some elliptic operator on a manifold (possibly
with G-structure).

Theorem 2.10. (Hirzebruch-Riemann-Roch) Let M be a compact complex manifold, and let V be
a holomorphic vector bundle. Then, the index of the Dolbeault operator ∂̄ + ∂̄∗ on the Dolbeault
complex {Λ0,i ⊗ V }, which equals the Euler characteristic in sheaf cohomology H∗(M,V ), is given
by

index(∂̄ + ∂̄∗) = χ(M,V ) = 〈Td(M)ch(V ), [M ]〉 ∈ Z.

3. Elliptic genera

Another example of a formal group law comes from the group structure of the Jacobi quartic
elliptic curve. We first start by working over C. Assume δ, ε ∈ C and the discriminant ∆ =
ε(δ2 − ε)2 6= 0. Letting the subscript J stand for Jacobi, we define

(3) logJ(x) :=
∫ x

0

dt√
1− 2δt2 + εt4

=
∫ x

0

dt√
R(t)

.

Here, logJ(x) is an example of an elliptic integral, and it naturally arises in physical problems such
as modeling the motion of a pendulum. Expanding logJ as a power series in x produces a formal
group law with a nice geometric description. Inverting the function logJ(x) gives

f(z) := expJ(z) = (logJ)−1(z),

which is an elliptic function (i.e. periodic with respect to a lattice Λ ⊂ C) satisfying the differential
equation (f ′)2(z) = R(z). Hence, it parameterizes the elliptic curve C defined by the Jacobi quartic
equation

y2 = R(x) = 1− 2δx2 + εx4 ⊂ CP2

via the map

C/Λ −→ CP2

z 7−→ [x(z), y(z), 1] = [f(z), f ′(z), 1].

The additive group structure on the torus C/Λ induces a natural group structure on the elliptic
curve C. This group structure coincides with the one given in Chapter 2, defined by P +Q+R = 0
for points P,Q,R on a straight line. Near the point [0, 1, 1], the group structure is given in the
parameter x by

FJ(x1, x2) := f(f−1(x1) + f−1(x2)) = expJ(logJ(x1) + logJ(x2)).

The formal group law FJ defined by the logarithm logJ can therefore be expressed by∫ x1

0

dt√
R(t)

+
∫ x2

0

dt√
R(t)

=
∫ FJ (x1,x2)

0

dt√
R(t)

.

Despite the integral logJ having no closed form solution, the formal group law was solved for
explicitly by Euler.
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Theorem 3.1. (Euler)

FJ(x1, x2) =
x1

√
R(x2) + x2

√
R(x1)

1− εx2
1x

2
2

.

While we previously worked over the field C, the Jacobi quartic is defined over an arbitrary ring,
and the universal curve is defined by the same equation over the ring Z[δ, ε]. The formal group
law FJ can be expanded as a power series in the ring Z[ 1

2 , δ, ε]. Any genus whose logarithm is of
the form (3) is called an elliptic genus, and the universal elliptic genus ϕJ corresponds to Euler’s
formal group law FJ over Z[ 1

2 , δ, ε]. When considering the grading, |δ| = −4 and |ε| = −8, so ϕJ
also defines an oriented genus. In fact, one can calculate that

ϕJ(CP2) = δ, ϕJ(HP2) = ε.

Example 3.2. The geometric description of FJ assumed ∆ = ε(δ2 − ε)2 6= 0 so that the curve C
has no singularities. However, the degenerate case δ = ε = 1 gives the L-genus, which equals the
signature of an oriented manifold:

log(x) =
∫ x

0

dt

1− t2
= tanh−1(x),

Q(x) =
x

tanhx
.

Similarly, letting δ = − 1
8 , ε = 0, we recover the Â-genus, which for a spin manifold is the index of

the Dirac operator:

log(x) =
∫ x

0

dt√
1 + (t/2)2

= 2 sinh−1(x/2);

Q(x) =
x/2

sinh(x/2)
.

The genera L and Â are elliptic genera corresponding to singular elliptic curves. This is explicitly
seen in the fact that their logarithms invert to singly-periodic functions as opposed to doubly-
periodic functions.

The signature was long known to satisfy a stronger form of multiplicativity, known as strict
multiplicativity. If M is a fiber bundle over B with fiber F and connected structure group, then
L(M) = L(B)L(F ). The same statement holds for the Â-genus when F is a spin manifold. As
more examples were discovered, Ochanine introduced the notion of elliptic genera to explain the
phenomenon and classify strictly multiplicative genera.

Theorem 3.3 (Ochanine, Bott–Taubes). A genus ϕ satisfies the strict multiplicativity condition
ϕ(M) = ϕ(B)ϕ(F ) for all bundles of spin manifolds with connected structure group if and only if ϕ
is an elliptic genus.

There is extra algebraic structure encoded within the values of the universal elliptic genus. Using
the Weierstrass ℘ function, to a lattice Λτ = Zτ + Z we can canonically associate coefficients ε(τ)
and δ(τ) satisfying the Jacobi quartic equation. The functions ε(τ) and δ(τ) are modular forms, of
weight 2 and 4 respectively, on the subgroup Γ0(2) := {A ∈ SL2(Z) |A = ( ∗ ∗0 ∗ ) mod 2} ⊂ SL2(Z).
Therefore, the elliptic genus ϕJ associates to any compact oriented 4k-manifold a modular form of
weight 2k on the subgroup Γ0(2). Because modular forms are holomorphic and invariant under the
translation τ 7→ τ + 1, we can expand them in the variable q = e2πiτ and consider ϕJ(M) ∈ QJqK.

Using insights from quantum field theory, Witten gave an alternate interpretation of the elliptic
genus which illuminated several of its properties. His definition of ϕJ is as follows. Let M be a
spin manifold of dimension n with complex spinor bundle S(TMC). To a complex vector bundle
V → X, use the symmetric and exterior powers to define the bundle operations

StV = 1 + tV + t2V ⊗2 + · · · ∈ K(X)JtK, ΛtV = 1 + tV + t2Λ2V + · · · ∈ K(X)JtK.
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Then, the power series in q defined by〈
Â(TM)ch

(
S(TMC)

∞⊗
l=1

Sql(TMC − Cn)⊗
∞⊗
l=1

Λql(TMC − Cn)
)
, [Mn]

〉
∈ QJqK

is equal to the q-expansion of the elliptic genus ϕJ . When M is a spin manifold, Witten formally
defined the signature operator on the free loop space LM , and he showed its S1-equivariant index
equals ϕJ (up to a normalization factor involving the Dedekind η function). The S1-action on
LM = Map(S1,M) is induced by the natural action of S1 on itself.

Witten also defined the following genus, now known as the Witten genus:

ϕW (M) :=
〈
Â(TM)ch

( ∞⊗
l=1

Sql(TMC − Cn))
)
, [Mn]

〉
∈ QJqK.

When M admits a string structure (i.e. M is a spin manifold with spin characteristic class p1
2 (M) =

0 ∈ H4(M ; Z)), Witten formally defined the Dirac operator on LM and showed its S1-equivariant
index equals ϕW (M), up to a normalization involving η. If M is spin, then the q-series ϕJ(M) and
ϕW (M) both have integer coefficients. If M is string, ϕW (M) is the q-expansion of a modular form
over all of SL2(Z). Note that the integrality properties can be proven by considering ϕJ and ϕW
as a power series where each coefficient is the index of a twisted Dirac operator on M . For more
detailed information on elliptic genera, an excellent reference is the text [HBJ].

4. Elliptic Cohomology

There is an important description of K-theory via Conner-Floyd. As described in Section 2,
the formal group law for K-theory is given by a map MP0(pt) → K0(pt) ∼= Z or MU ∗ → K∗ ∼=
ZJβ, β−1K, depending on our desired grading convention. From this map of coefficients encoding the
formal group law, one can in fact recover all of K-theory.

Theorem 4.1. (Conner-Floyd) For any finite cell complex X,

K∗(X) ∼= MP∗(X)⊗MP0 Z ∼= MU ∗(X)⊗MU∗ ZJβ, β−1K.

In general, Quillen’s theorem shows that a formal group law F over a graded ring R is induced by
a map MU ∗ → R. Can we construct a complex-oriented cohomology theory E with formal group
law F over E∗ ∼= R? Imitating the Conner-Floyd description of K-theory, we can define

E∗(X) := MU ∗(X)⊗MU∗ R.

While E is a functor satisfying the homotopy, excision, and additivity axioms of a cohomology
theory, the “long exact sequence of a pair” will not necessarily be exact. This is due to the fact
that exact sequences are not in general exact after tensoring with an arbitrary ring. If R is flat over
MU ∗, then E will satisfy the long exact sequence of a pair and will be a cohomology theory.

The condition that R is flat over MU ∗ is very strong and not usually satisfied. However, the
Landweber exact functor theorem states that R only needs to satisfy a much weaker set of condi-
tions. This criterion, described in more detail in Chapter 5, states one only needs to check that
multiplication by certain elements vi is injective on certain quotients R/Ii. In the case of the ellip-
tic formal group law, the elements v1 and v2 can be given explicitly in terms of ε and δ, and the
quotients R/In are trivial for n > 2. Therefore, one can explicitly check Landweber’s criterion and
conclude the following.

Theorem 4.2. (Landweber, Ravenel, Stong) There is a homology theory Ell

Ell∗(X) = MU ∗(X)⊗MU∗ Z[
1
2
, δ, ε,∆−1]

whose associated cohomology theory is complex oriented with formal group law given by the Euler
formal group law. For finite CW complexes X,

Ell∗(X) = MU ∗(X)⊗MU∗ Z[
1
2
, δ, ε,∆−1].

10



In Ell∗, |δ| = −4, |ε| = −8.

The theory Ell was originally referred to as elliptic cohomology, but it is now thought of as a
particular elliptic cohomology theory. If we ignore the grading of δ and ε, we can form an even
periodic theory by MP(−)⊗MP Z[ 1

2 , δ, ε,∆
−1]. This motivates the following definiton.

Definition 4.3. An elliptic cohomology theory E consists of:
• A multiplicative cohomology theory E which is even periodic,
• An elliptic curve C over a commutative ring R,
• Isomorphisms E0(pt) ∼= R and an isomorphism of the formal group from E with the formal

group associated to C.

The even periodic theory associated to Ell is an elliptic cohomology theory related to the Jacobi
quartic curve over Z[ 1

2 , δ, ε,∆
−1]. An obvious question is whether there is a universal elliptic co-

homology theory; this universal theory should be related to a universal elliptic curve. Any elliptic
curve C over R is isomorphic to a curve given in affine coordinates by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ R.

However, there is no canonical way to do this since the Weierstrass equation has non-trivial auto-
morphisms. There is no single universal elliptic curve, but instead a moduli stack of elliptic curves,
as seen in Chapter 4. Because of this, there is no universal elliptic cohomology theory in the naive
sense.

What one does end up with as the “universal elliptic cohomology theory” is topological modular
forms or tmf . Its mere existence is a difficult and subtle theorem, and it will take the rest of these
proceedings to construct tmf . Roughly speaking, one uses the Landweber exact functor theorem
to form a pre-sheaf of elliptic cohomology theories on the moduli stack of elliptic curves. One then
lifts this to a sheaf of E∞ ring-spectra and takes the global sections to obtain the spectrum tmf .
While constructed out of elliptic cohomology theories, tmf is not an elliptic cohomology theory, as
evidenced by the following properties.

There is a homomorphism from the coefficients tmf −∗ to the ring of modular forms MF . While
this map is rationally an isomorphism, it is neither injective nor surjective integrally. In particular,
tmf −∗ contains a large number of torsion groups, many of which are in odd degrees. Topological
modular forms is therefore not even, and the periodic version TMF has period 242 = 576 as opposed
to 2 (or as opposed to 24, the period of Ell). Furthermore, the theory tmf is not complex orientable,
but instead has an MO〈8〉 or string orientation denoted σ. At the level of coefficients, the induced
map MString−∗ → tmf −∗ gives a refinement of the Witten genus ϕW .

tmf−∗

��
MString−∗

σ
66

ϕW // MF

While a great deal of information about tmf has already been discovered, there are still many
things not yet understood. As an example, the index of family of (complex) elliptic operators
parameterized by a space X naturally lives in K(X), and topologically this is encoded by the
complex orientation of K-theroy. Because of analytic difficulties, there is no good theory of elliptic
operators on loop spaces. However, it is believed that families indexes for elliptic operators on loop
spaces should naturally live in tmf and refine the Witten genus. Making mathematical sense of this
would almost certainly require a geometric definition of tmf , which still does not yet exist despite
efforts including [Seg, ST].
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