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Abstract

These rather skeletal notes are meant for readers who have some idea of the general story of elliptic cohomol-
ogy. More than anything, they should probably be used as a roadmap when reading the original Survey itself.
They grew out of a desire to completely understand the shape of the proof of the main theorem, and so I’ve
postponed the material on equivariant theories until after it in order to make the route to the main theorem as
direct as possible. Preorientations and orientations can seem rather mysterious at first; the original paper carries
out two examples in great detail. I’ve also omitted everything from §5, which although fascinating is already
quite sketchy in the first place.

Elliptic cohomology

We assume the reader is familiar with the story of generalized (first) Chern classes, formal group laws, and the
Landweber exact functor theorem.

We recall that an elliptic curve is a group object E in some the overcategory Sch/X whose geometric fibers are
elliptic curves in the usual sense (i.e. genus-1 curves with a commutative group structure). Given an elliptic curve

E → X, taking the formal completion along the identity section e : X → E gives us a formal group Ê . When this is
Landweber-exact, the resulting cohomology theory is called the elliptic cohomology theory associated to E .

We’d like to find a “universal elliptic cohomology theory”, but there’s no universal elliptic curve so this doesn’t
quite make sense. That is, there’s no moduli scheme that represents the functor taking a scheme to elliptic curves
over it; elliptic curves can have nontrivial automorphisms, so for instance an elliptic curve E → X might have that
all its geometric fibers E0 are isomorphic without being a product. A universal elliptic curve would have to have
exactly one geometric fiber isomorphic to E0, but then the map from X classifying E would have to be constant,
which would imply that E is a product.

Nevertheless, we can consider the category of elliptic curves over a fixed base as a groupoid, and then we have
a perfectly well-defined moduli stack of elliptic curves M1,1. This is a Deligne-Mumford stack, meaning that there
are “enough” étale morphisms from schemes.1 If a morphism φ : Spec R → M1,1 is étale (or even just flat), the

resulting formal group Êφ is Landweber-exact. We denote the associated elliptic cohomology theory Aφ.

The functor {φ : Spec R → M1,1 étale}  Aφ defines a presheaf O of cohomology theories on the étale site
of M1,1 (or at least on its restriction to affine schemes), which we will also denote by M1,1. We’d like to take
global sections to get a universal elliptic cohomology theory, but the geometry of “cohomology theories” is rather
unmanageable. Instead, we’d like to lift O to a presheaf of spectra. In fact, this involves some very difficult
obstruction theory, but Hopkins and Miller realized that it’s actually easier to lift O to a presheaf of E∞-ring
spectra (or simply E∞-rings); these are very rigid, so although it’s harder to write down maps between them, it’s
also harder to write down the wrong maps between them, and hence the obstruction theory simplifies. This allowed
Goerss, Hopkins, and Miller to prove the following theorem.

Theorem 1. There exists a commutative diagram

E∞-Rings

M1,1
O-

OM
D
er

-

Cohomology Theories
?

such that π0OMDer ' OM1,1 .

1What’s the right thing to say here?
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This gives a derived version of the moduli stack: it has the same topos but a new structure sheaf. We can now
finally define tmf[∆−1] = holim OMDer . (Here, ∆ is the discriminant of an elliptic curve, which is invertible iff the
curve is smooth. To obtain tmf, we must replaceM1,1 with its Deligne-Mumford compactificationM1,1.) However,
sinceM1,1 isn’t affine, this loses a lot of information; we will consider OMDer as our primary interest, which we will
rediscover in the next section when we study equivariant cohomology theories.

Equivariant cohomology and motivation for the derived perspective

There’s a naive definition of equivariant cohomology, called Borel-equivariant cohomology : for any theory A, a
compact Lie group G, and a G-space X, we define ABor

G (X) = A((X × EG)/G) (the space X × EG just gives the
“freeification” of the G-action on X). But group actions are delicate and really ought to be studied on the nose
instead of just up to homotopy, so this doesn’t generally give us what we truly want. For instance, the equivariant
K-theory of a G-space X, denoted KG(X), is defined via vector bundles E → X where E is a G-space and the
projection is G-equivariant. The Atiyah-Segal completion theorem implies that the natural map

Rep(G) = KG(∗)→ KG(∗ × EG) = K(BG) = KBor
G (∗)

identifies the target as the completion of the representation ring Rep(G) at the augmentation ideal of virtual
representations with virtual dimension 0.

Let’s look at the simplest case, where G = S1. We can readily compute that Rep(S1) ∼= Z[χ±], where χ : S1 ↪→
C× is the standard inclusion, and also that K(BS1) = K(CP∞) ∼= Z[[c]], where c = [O(1)] − 1 is the generalized
first Chern class. The map Z[χ±]→ Z[[t]] is then given by χ 7→ (t+ 1).

The crucial insight is that we should really by viewing Rep(S1) = O(Gm), K(CP∞) = O(Ĝm), and O(Gm)→
O(Ĝm) as restriction of functions. This suggests that given any algebraic group G and cohomology theory A with

Ĝ ∼= Spf A(CP∞), we should expect that AS1(∗) = O(G). This yields a “completion map” AS1(∗) → A(CP∞) =
ABor
S1 (∗), which again should just be restriction of functions.

This is a great idea, but unfortunately we don’t get AG from AG(∗) (even when G = {e}; the Atiyah-Hirzebruch
spectral sequence measures the extent to which a cohomology theory isn’t determined by its coefficients). Rather,
we want restriction of functions to give us a derived completion map AG → ABor

G of cohomology theories, which
returns the above completion map as a special case. This suggests that G should be an algebraic group with sheaf
of functions taking values in E∞-rings.

Derived algebraic geometry

We will assume the reader is familiar with the basic ideas surrounding E∞-rings, which are just E∞-algebras in
the category of (naive) ring spectra. They are inherently ∞-categorical in nature, so instead of hom-sets they have
hom-spaces. There are two points of view which we will employ.

1. There is an analogy

E∞-rings : commutative rings :: commutative rings : reduced commutative rings;

we should think of the functor A  π0A as analogous to the functor R  R/nR, where nR ⊂ R is the ideal
of nilpotents.

2. An E∞-ring determines functors X  AX  An(X), where An(X) = π−n(AX) for n ∈ Z, and in particular
X  A(X) = A0(X) becomes a cohomology theory with multiplicative structure and higher-order cohomology
operations.

Now, let A be an E∞-ring. We define the associated affine derived scheme (Spec A,OSpec A) following classical
algebraic geometry very closely:

• The topological space Spec A is just the topological space Spec π0A.

• Given any f ∈ π0A, on the distinguished open set D(f) we put OSpec A(D(f)) = A[f−1].
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Of course, A[f−1] is again an E∞-ring; it is a localization A → A[f−1], which is characterized either by the fact
that π∗A→ π∗(A[f−1]) identifies π∗(A[f−1]) with (π∗A)[f−1], or the fact that for any E∞-ring B, the induced map
Hom(A[f−1], B) → Hom(A,B) is a homotopy equivalence of the source onto the subspace of the target consisting
of those maps A → B carrying f to an invertible element of π0B. (This is a collection of path components of
Hom(A,B).) Of course, a derived scheme is simply a pair (X,OX) of a topological space and a sheaf of E∞-rings
which is locally equivalent to an affine derived affine. These are also ∞-categorical; given derived schemes (X,OX)
and (Y,OY ), their hom-space is defined by

Hom((X,OX), (Y,OY )) =
∐

f :X→Y

Hom0(OY , f∗OX),

where Hom0(OY , f∗OX) ⊂ Hom(OY , f∗OX) denotes the subspace of local maps of sheaves of E∞-rings, i.e. maps
which induce local homomorphisms π0OY,f(x) → π0OX,x for every x ∈ X.

Classical rings can be viewed as E∞-rings (via the Eilenberg-Mac Lane functor), and so a classical scheme can be
viewed as a derived scheme (although the structure sheaf needs to be re-sheafified in this new context). Conversely,
given a derived scheme (X,OX), we can define a presheaf U  π0(OX(U)) of classical rings on X. Its sheafification
yields a classical scheme, and we denote the result (X,OX)0 (or just X0). However, note that this functor is only
right adjoint to the inclusion of classical schemes if we restrict to connective E∞-rings, i.e. those which have no
homotopy groups below dimension 0.

E∞-rings admit a notion of module (spectra): an A-module M is just a spectrum with an action map A∧M →M
satisfying the usual diagrammatic axioms.

Definition 1. Let A be an E∞-ring and M be a A-module. We say that M is flat if:

1. π0M is classically flat as a π0A-module.

2. For all n ∈ Z, the map πnA⊗π0A π0M → πnM induced by the action A ∧M →M is an isomorphism.

If p : (X,OX)→ (Y,OY ) is a map of derived schemes, we say p is flat if for all affine opens U ⊂ X and V ⊂ Y such
that p(U) ⊂ V , the induced map of E∞-rings OY (V )→ OX(U) is flat.

If p : (X,OX) → (Y,OY ) is flat, then π0p : (X,π0OX) → (Y, π0OY ) must be classically flat. Conversely, if
(Y,OY ) is a classical scheme, then for p to be flat, (X,OX) must be a classical scheme as well (and p = π0p must
be classically flat).

Derived group schemes and orientations

Recall our dream of a derived completion map

O(G) = AS1(∗)→ A(CP∞) = ABor
S1 (∗) = O(Ĝ).

We previously had the group scheme G defined over A(∗), i.e. we had a structure map G→ Spec A(∗). To improve
this, we should instead take G to be a derived group scheme with structure map G→ Spec A.

Definition 2. Suppose X is a derived scheme. We say that a derived X-scheme G is a commutative X-group if:

1. The structure map G→ X is flat.

2. We have a specified lifting

TopAbGrp

DSch/X
Hom(−,G) -

-

Top.
?

∩

We want some way of ensuring that our completion map is nontrivial. For this, we make the following definition.
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Definition 3. If X is a derived scheme and G is a commutative X-group, then a preorientation of G is a map
CP∞ → G(X) = Hom(X,G) of topological abelian groups. Since CP∞ is the free topological abelian group on the
based space S2, this is equivalent to a based map S2 → Hom(X,G).

If X = Spec A (so A = O(X)) and G is a commutative A-group, we can optimistically write AS1 = O(G).
Then we can compose our preorientation σ : CP∞ → Hom(X,G) with the global sections map Hom(X,G) →
Hom(AS1 , A) to obtain our desired derived completion map AS1 → ACP∞ . The condition that the preorientation
be a map of topological abelian groups ensures that the map Spf ACP∞ → Spec AS1 be compatible with the group
structures.2 Morally, a preorientation is an orientation if the derivative of this map is invertible. Fortunately, there
is a way to make this precise without using formal derived algebraic geometry.

Recall that a preorientation is given by a based map σ : S2 → G(Spec A) = Hom(Spec A,G). In classical
algebraic geometry, the image of an affine is always contained in an affine; this holds in the derived setting too.
Given any affine Spec B ⊂ G containing the image e(Spec A) of the identity section, we necessarily have a
factorization

S2 σ - Hom(Spec A,G)

Hom(Spec A,Spec B),
∪

6

-

and of course Hom(Spec A,Spec B) ∼= Hom(B,A). (After all, a derived scheme is just a topological space with
a fancy sheaf on it; since the basepoint of S2 lands in Hom(B,A) ⊂ Hom(Spec A,G), the rest of its points
can only vary the map on E∞-rings but cannot change the underlying map on classical schemes.) By the usual

exponential adjunction, σ : S2 → AB corresponds to some σ̂ : B → AS
2

= AΣ∞+ S2

(although actually it lands in

AΣ∞S2 ⊂ AΣ∞+ S2

). We apply π0, noting that

π0A
S2

= [S, AΣ∞+ S2

] ∼= [S ∧ Σ∞+ S
2, A] = [Σ∞+ (S0 ∨ S2), A] ∼= π0A⊕ π2A,

which gives us a map σ̃ : π0B → π0A⊕π2A of π0A-algebras. The map π0B → π0A is a ring homomorphism coming
from the identity section e : Spec A → Spec B ⊂ G, and so by definition the map π0B → π2A is a π0A-algebra
derivation of π0B into π2A.3 We write ω = e∗ΩG0/π0A = e∗Ωπ0B/π0A, which we consider as a π0A-module. Then
our σ̃ : π0B → π0A⊕ π2A corresponds to a map β : ω → π2A of π0A-modules.

Definition 4. We say that a preorientation σ : S2 → G(A) of G→ Spec A is an orientation if:

1. The induced map β : ω → π2A yields isomorphisms πnA⊗π0A ω → πnA⊗π0A π2A→ πn+2A for all n ∈ Z.

2. G0 → Spec π0A is smooth of relative dimension 1.

More generally, if our derived group scheme is defined over an arbitrary derived scheme X, we say that a the
preorientation is an orientation if it is an orientation when restricted to every open affine Spec A ⊂ X.

If G is oriented then A must be weakly periodic, i.e. the natural map A2(∗)⊗A(∗) A
n(∗)→ An+2(∗) must be an

isomorphism for all n ∈ Z. (This implies that A2(∗) is a projective A(∗)-module of rank 1; A is called periodic if it is
also free.) Conversely, when A is weakly periodic, then our preorientation is an orientation iff β is an isomorphism.

Oriented elliptic curves

Definition 5. derived elliptic curve

Definition 6. derived D-M stack

2But what’s the difference between Spec AS1 = Spec O(G) and G itself? This will come up later.
3Recall that for a ring R, an augmented R-algebra S, and an R-module M , an R-algebra derivation of S into M is by definition a

function S →M giving a map of augmented R-algebras S → R⊕M , where the target has multiplication given by (r1+m1)?(r2+m2) =
r1r2 + r1 ·m2 + r2 ·m1. These are classified by the module of relative (or Kähler) differentials (i.e., of sections of the dual of the space
of vertical tangent vectors), denoted ΩS/R. More precisely, for any R-module M , HomAugAlgR

(S,R⊕M) ∼= HomModR (ΩS/R,M).
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notation, notation, notation. (Weird yoga.)

DIAGRAM OF PROOF OF THEOREM 4.1

Theorem 4.1: Hom(Spec A,MDer) ' E(A)

define E′ and(M,O′); define O, assume (1) and (2)

(2) for n = 2k + 1,
πnO = 0

(1) for n = 2k,

ωk
∼−→ πnO in QCoh(M1,1)

Proposition 4.1 (realization theorem)

Let k be a perfect field of characteristic p,
κ : Spec k →M1,1 be a closed point classifying E0 → Spec k,
and O′κ be the formal completion of O′ at κ
(so π0O′κ is the formal completion of OM1,1

at κ).
Then there is a universal preoriented deformation E → Spec O′κ
of E0 → Spec k, whose preorientation gives β ∈ π2O′κ.
Define Oκ = O′κ[β−1]. Then Oκ is even and π0Oκ = π0O′κ.

Equivariant cohomology revisited

Fix an E∞-ring A, a commutative A-group G, and a compact abelian Lie group T . In the case T = S1 we want that
AS1(∗) = O(G), and we will have AS1(X) = Γ(G,FS1(X)) for some quasicoherent sheaf FS1(X) over G. More
generally, for any T we will construct a derived scheme MT such that AT (∗) = O(MT ) and AT (X) = Γ(MT ,FT (X))
for some quasicoherent sheaf FT (X) over MT .

Let us write T∨ = Hom(T, S1), the character group of T . Then, we obtain the derived A-scheme MT by
MT (B) = DHomGrp(T

∨,G(B)) (where really the “derived” part of derived-hom only matters if T isn’t connected).

We should expect that O(MT ) = AT (∗) = A(∗//T ); that is, this shouldn’t depend on the chosen basepoint of
the orbifold ∗//T . We can rephrase this as saying that we’d like a factorization

CpctAbLieGrp
T  MT - DSch/A

{unbased spaces BT (for T ∈ CpctAbLieGrp)}.

M̃

6
⊂

T  BT
-

Via the method of the universal example, one proves that such functors M̃ are equivalent to preorientations of G.

Definition 7. A T -space X is called finite if it admits a filtration ∅ = X0 ⊂ X1 ⊂ . . . ⊂ Xn = X where Xi+1 is
obtained from Xi by equivariantly attaching a T -equivariant cell (T/Ti)×Dk+1 for some closed subgroup Ti ≤ T ,
i.e.

Xi+1 = Xi

∐
(T/Ti)×Sk

(T/Ti)×Dk+1.

We now have the following theorem, which functorially provides for equivariant cohomology theories with respect
to all compact abelian Lie groups.
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Theorem 2. There exist essentially unique functors FT : Finite T-Spacesop → QCohMT
for all compact abelian

Lie groups T such that:

1. T -equivariant homotopy equivalences are taken to equivalences of sheaves.

2. For any finite diagram {Xα} in Finite T-Spaces, FT (hocolim Xα) ' holim FT (Xα).

3. FT (∗) = OMT
.

4. If X is a finite T -space, T ≤ T ′, X ′ = (X × T ′)/T , and f : MT → MT ′ is the morphism of derived schemes
induced by the inclusion of groups, then FT ′(X

′) = f∗FT (X).

(Actually we need some further naturality requirements, e.g. the isomorphisms in the final condition should behave
well with respect to sequences of inclusions T ≤ T ′ ≤ T ′′.)

Then, we define AT (X) = Γ(MT ,FT (X)), a module spectrum over Γ(MT ,OMT
) = AT (∗), or if we wish we can

even pass to classical algebra by defining AnT (X) = π−nAT (X).

If T acts transitively on X, then there is a noncanonical isomorphism X ∼= T/T ′ for some closed subgroup
T ′ ≤ T ; a choice of isomorphism is equivalent to a choice of basepoint for X. So, the identification FT (X) ∼=
f∗FT ′(∗) = f∗OMT ′ is noncanonical. However, this is precisely accounted for by the fact that MT only depends on

the unbased space BT via the functor M̃ ; a preorientation is precisely what we need for this all to work.

A good T -equivariant cohomology theory should be Rep(T )-graded instead of Z-graded. By general repre-
sentability theorems, A0

T is represented (T -equivariantly) by a T -space Z(0), which is an infinite loopspace; more
generally, AnT is represented by a T -space Z(n) which is an n-fold delooping of Z(0). Our new demand is equivalent
to demanding deloopings of Z(0) with respect to representation spheres SV = V ∪{∞} (for V a T -representation).
We carry this out presently.

If X ′ ⊂ X is an inclusion of finite T -spaces, we define the “relative cohomology” by FT (X,X ′) = fib(FT (X)→
FT (X ′)). Note that the projections X ← X ×Y → Y give maps FT (X)→ FT (X ×Y )← FT (Y ), or equivalently
a map FT (X) ⊗FT (Y ) → FT (X × Y ); this extends to FT (X,X ′) ⊗FT (Y ) → FT (X × Y,X ′ × Y ) or even to
FT (X,X ′)⊗FT (Y, Y ′)→ FT (X × Y,X0 × Y ∪X × Y0).

Theorem 3. Let A be an E∞-ring, G an oriented A-group, T a compact abelian Lie group, V a finite-dimensional
unitary T -representation, and denote by SV ⊂ BV the unit sphere and ball of V respectively. Then LV =
FT (BV, SV ) is a line bundle (i.e. it is invertible), and for all T -spaces X, the map LV ⊗ FT (X) → FT (X ×
BV,X × SV ) is an isomorphism.

By this theorem, we get equivalences LV ⊗ LW
∼→ LV⊕W , so we can actually extend the definition above to

virtual representations. Now for any virtual T -representation V , we can define AVT (X) = π0Γ(MT ,FT (X)⊗L−1
V ).

This is represented by a T -space Z(V ); if V is an honest T -representation, then Z(V ) is a SV -delooping of Z(0),
i.e. HomT (SV , Z(V )) ' Z(0).4

For the case of a general compact Lie group G which isn’t necessarily abelian, we extrapolate formally from the
results above.

Theorem 4. Let A be an E∞-ring. There exist essentially unique functors AG : G-Spacesop → Spectra for all
compact Lie groups G such that:

1. G-equivariant homotopy equivalences are taken to equivalences of spectra.

2. If H ≤ G is an inclusion of compact Lie groups, then there exist natural equivalences AH(X) ' AG((X ×
G)/H).

3. For any diagram {Xα} of G-spaces, AG(hocolim Xα) ' holim AG(Xα).

4. If G is abelian and X is a finite G-space, we recover the notions above.

5. Let EabG be any G-space such that for all closed subgroups H ≤ G, the H-fixed points (EabG)H are empty if
H is nonabelian and weakly contractible if H is abelian. Then for all G-spaces X, AG(X)

∼→ AG(X ×EabG).

4Notation for equivariant maps?
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It might seem more natural to replace the last two conditions with:

4’. If G = {e}, then AG(X) = AX .

5’. For any G-space X, AG(X)
∼→ AG(X × EG).

However, it turns out that these new conditions actually characterize Borel-equivariant cohomology. On the other
hand, if A = K and G = Gm, then for any compact Lie group G, the conditions of the theorem recover equivariant
K-theory. More generally, when G is connected we can actually mimic the previous discussion: we get something
like derived schemes MG and functors FG, and if the theorem concerning LV still holds, then condition 5 above
still holds too.
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