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Abstract. We present a seamless multiscale model and an efficient coupling scheme for the
study of complex fluids. The multiscale model consists of macroscale conservation laws for mass
and momentum, molecular dynamics on fiber bundles, as well as the Irving-Kirkwood formula which
links the macroscale stress tensor with the microscopic variables. The macroscale and microscale
models are solved with a macro time step and a micro time step respectively. The two models are
synchronized at each time step by exchanging the velocity gradient (from macro to micro) and the
stress tensor (from micro to macro). The multiscale method is applied to study the dynamics of
polymer fluids in a channel driven by external forces.

Key words. multiscale modeling; complex fluids; molecular dynamics; fiber bundle

AMS subject classifications. 76M25; 65C35; 65Z05

1. Introduction

The modeling of constitutive equations for the stress tensor represents one of
the major difficulties in the study of macroscale behaviors of complex fluids. For
simple fluids, the simple linear relation between the stress and the strain rate, with all
molecular details lumped into a single parameter, i.e. the viscosity, works remarkably
well. For complex fluids such as polymers or liquid crystals, however, the constitutive
relation becomes much more complicated, essentially due to the complex nature of
constituting molecules. Conventionally, this relation has been modeled empirically
in these situations. In recent years, there has been a growing interest on modeling
this relation using first-principle microscale models, such as Brownian dynamics [1] or
molecular dynamics (MD) [2]. The stress which is either pre-computed or calculated
“on the fly” from a microscale model is used to solve the macroscale conservation laws
to capture the macroscopic behavior of the system. This kind of multiscale model
bypasses the necessity for making ad hoc modeling assumptions; thus in principle it
has the accuracy of the microscopic model, while retaining much of the efficiency of
a continuum model.

In this paper, we introduce a seamless multiscale method for the study of complex
fluids. The multiscale model is built upon a general framework proposed in Ref. [3],
and it is formulated using microscopic dynamics on fiber bundles. The fibers are
associated with the physical domain of interest. The macroscale dynamics of the
fluid is described by the conservation laws of mass and momentum over the physical
domain, in the meanwhile the stress tensor is computed from molecular dynamics over
the fibers “on the fly”. Therefore, our multiscale model contains a system of coupled
equations, including the macroscale conservation laws and the microscale molecular
dynamics. The two models are solved using different time steps - one is of macroscopic
scale and the other is of microscopic scale. The two models are synchronized at each
macro and micro time step by exchanging data. The main advantage of this multiscale
model is that the macro and micro dynamics are coupled seamlessly, and it avoids
the need for explicitly going back and forth between these two models. In contrast,
the method we proposed earlier in Ref. [2] requires going back and forth explicitly
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between the macro and micro models, thus it is not seamless. In particular, the
method in Ref. [2] has the drawback that one needs to reinitialize MD each time
when the stress is needed.

In the following we describe the structure of the multiscale model and the numer-
ical scheme for solving this model. We will present two numerical examples, in which
the multiscale method is applied to study the dynamics of channel flows which are
driven external forces.

2. The Multiscale Method

2.1. Formulation of the multiscale model. Let us denote the spatial
domain of interest by (2. We associate with {2 a collection of fibers {v;, =€ 2}.
Our multiscale model consists of three components: A macroscale dynamics on {2, a
microscale dynamics on ., and a link between these two dynamics. The link specifies
the model input for the macro dynamics using the microscale model. Next we discuss
these three components in details.

Our macroscale model for the fluid system is the conservation of mass and mo-
mentum:

{p(@tu—kv-(u@u))—vm-T:O, €L (2.1)

V-u=0

where p, v and 7 are the fluid density, the velocity field and the stress tensor re-
spectively. At this level, the system is not closed since the stress tensor is yet to be
specified. In the multiscale method, the stress is calculated from a microscale model
as described below.

Our microscale model for the stress tensor is molecular dynamics of N particles in
each fiber v,, where v, ={1,2,---, N} and the integers are the indices of the particles.
These particles evolve in time according to Newton’s equation:

mii"'i:fi, i=1,2,-",N (22)

where m; and r; are the particle mass and position respectively, f; is the atomistic
force on the i-th particle. The MD in each fiber is conducted in a finite box; the
volume of the box is determined by the particle number IV and the particle density p.
Here we assume the stress tensor only depends on the velocity gradient A(z,t) =V, u,
where u is the macroscale velocity field. Then the MD systems have to be constrained
so that at time ¢ the mean velocity gradient in the fiber -, is equal to A(z,t). This
constraint is imposed through the boundary condition which will be discussed later
in the numerical examples.

The macroscale model (2.1) and the microscale model (2.2) are linked together
through the Irving-Kirkwood formula [4], which expresses the stress tensor in terms of
the microscale variables. Specifically, the macroscale stress tensor at (z,t) is computed
from MD in the corresponding fiber 7, and at the time ¢:

FEtm)= =Y (mwi@v;)6(ri —§)
1 ! (2.3)
5= @ L) [ 50w+ A= X - €)ax
i 0
where v; =17; — Ar; is the thermal velocity of the i-th particle, and f;; is the force acting
on the i-th particle by the j-th particle. The average of 7 over the MD simulation
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Fic. 2.1. Two strategies for the coupling of the macro and micro models. Upper panel: The
macro and micro dynamics are solved with a macro time step At and a micro time step §t respec-
tively; the two models exchange data at every macro time step and every M micro steps. Lower
panel: The macro dynamics is solved using a reduced macro time step At/M; the two models ex-
change data at every (reduced) macro and micro time step.

box w gives the stress needed in the macro model:

T(x,t)zé/%(f,t;x)dﬁ. (2.4)

where V' is the volume of w.

Equations (2.1), (2.2) and (2.3), (2.4) form our multiscale model. Equation (2.1)
is the macroscale model for the velocity field, Eq. (2.2) is the microscale model in the
fibers 7. Egs. (2.3) and (2.4) provides the stress tensor and give the link between
the two models.

2.2. Coupling scheme. The macro and micro models in Eqs. (2.1) and
(2.2) contain at least two disparate time scales: A macro scale associated with the
hydrodynamics, and a micro scale associated with the fast molecular motions. This
gives rise to the following difficulty when numerically solving the coupled models: On
one hand we are interested in the macroscale hydrodynamics, on the other hand, we
are forced to use a time step 6t which is of microscopic size in order to resolve the fast
molecular motions in MD. It would be prohibitively expensive to solve the coupled
models simultaneously over a hydrodynamics time scale.

This difficulty can be overcome using the fact that the particle system relaxes to a
(quasi) steady state on a microscopic time scale; consequently the MD constrained by
the velocity gradient at every macro time step reaches the steady state after M micro
steps, where Mot < At, At and d§t are the macro and micro step size respectively.
This suggest the following numerical scheme: Solve the macro dynamics with a macro
step size At; at the same time solve the constrained MD for M steps with a micro
step size dt, and then synchronize the two models by exchanging the velocity gradient
and the stress. This procedure is illustrated in the upper panel of Fig. 2.1.
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A more efficient coupling scheme is to synchronize the two models at each micro
step. This requires solving the macro dynamics using a reduced time step At' = At/M.
This procedure is illustrated in the lower panel of Fig. 2.1. By exchanging data
at every macro and micro time step, the data calculated from the micro model are
implicitly averaged over time, and the resulting data contain less statistical errors. To
see this let us assume the macroscale variable is x and it is governed by the equation
&= f(z,y). Here y is a fast variable and is supplied by some microscale model. We
now solve this equation for x using the simplest solver, the forward Euler, with a time
step At/M:

At
:EkJrl:fEk-i-Mf(fEk,yk), k=0,1,--- (2.5)

where 2" is the numerical solution at t§, = kAt/M, and y* is the numerical solution to
the micro model at t¥, =k&t. From (2.5) it is easy to see that the numerical solution
of x at tk, + At can be expressed as

Pt =gk 4 AtFR (2.6)

where FF = Mflzfi,iu_l f(z%,y") is the average of f over the previous M steps.
The procedure of solving the coupled macro and micro models is summarized in
the following:

(0) Prepare the initial data for the macro and micro models; choose the parameter
M, which is the number of micro steps conducted per macro time interval
At;

(1) Solve the macro and micro models using standard solvers for one time step
with step size At' = At/M and 6t respectively;

(2) Synchronize the two models by exchanging data;

(3) Go to step (1).

The above algorithm is equivalent to rescaling the micro dynamics according
to t — (t, where ( = M§t/At, then solving the macro and the rescaled micro models
with the same time step At/M. The idea of rescaling the fast dynamics has been used
before in boosting algorithms. In boosting algorithms, the small parameter present
in the original micro model is replaced by a larger, boosted value, and the resulting
modified equations are solved by standard solvers. This kind of ideas have been used in
Chorin’s artificial compressibility method [5] and Car-Parrinello ab initio molecular
dynamics [6]. It was recently discussed in a general context in [7]. The algorithm
presented here is different from the boosting algorithms in the following aspect: In the
method based on fiber bundle dynamics, one solves the coupled macroscale (effective)
and microscale equations; the macroscale (slow) variables have to be identified and
the macroscale model needs to be formulated beforehand. In contrast, in boosting
algorithms only the modified micro-model is solved and one does not need to identify
the slow variables beforehand. Further discussions and comparisons of these methods
will be presented in [8].

3. Applications of the Multiscale Method
We next discuss the implementation issues of the multiscale method and demon-
strate its efficiency by two examples.

3.1. Problem setup. We calculate the dynamics of a channel flow driven
by an external force, as illustrated in Fig. 3.1. We will consider two types of fluids
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Fic. 3.1. Schematic illustration of the system studied in the numerical example and the com-
putational mesh for the macroscale model. The velocity is defined at the grid point, and the shear
stress is defined at the center of each cell indicated by black dots.

respectively. In the first example the fluid consists of Lennard-Jones particles, and
in the second example the fluid consists of polymers. The first example serves as
a benchmark for the multiscale method, whose solution will be compared with the
solution of the Navier-Stokes equation.

The flow is driven by a time-dependent external force f(¢) in z-direction. Since
the flow is homogeneous in both  and y directions, the macroscale model (2.1) reduces
to

pOu=0.7+ f(t), 0<z<L (3.1)

where u is the velocity in the z-direction and 7 is the shear stress. Equation (3.1) is
supplemented with initial condition u =0 and the no-slip boundary condition u =0 at
the two channel walls located at z=0 and z= L respectively.

The spatial domain [0,L] is covered by a uniform mesh {z;=iA4z,i=0,1,---,1},
where Az=L/I is the mesh size. Equation (3.1) is discretized by the forward Euler
method in time and central difference in space:

uf“ —uk _ Tikﬁ/z - Tik;1/2
At Az

k=0,1,2,---

where u¥ is the velocity at the grid point z; and at time ¢, = kAt', At' = At/M is the

macro time step; 7'1.73rl /2 is the shear stress defined at z;, 1/, which is the center of the

cell [z;,zi11]; f¥ is the driving force at tx. The difference equation is supplemented
with the initial and boundary conditions:
ud =0, ub=uk=0. (3.3)
Corresponding to the discretized spatial domain, we have I fibers, {7y;11/2,i=
0,1,---,1—1}, each of which is associated with one cell. The Newton’s equation (2.2)
is solved in each of these fibers and provides the shear stress Ti’ﬁrl /2 Each MD is
constrained by the velocity gradient in the corresponding cell. The velocity gradient
is calculated using finite difference:

k k
k Uit1 — Uy .
Aipp=— 4 1=0L-I-L (34)
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Fic. 3.2. Schematic illustration of the constrained MD simulation. The MD box deforms
according to the specified velocity gradient. Periodic boundary condition for particle positions is
applied on the deforming box. The left panel shows the initial configuration; the middle and right
panels show the configuration at two later times. When the box wvertices coincide with the lattice
defined by the initial box, the simulation is reinitialized by shifting the molecules in the region III to
the region 1.

Note that A in this example is a scalar and denotes the shear rate.

Each MD system contains N particles in a 3d simulation box. The interaction
potential between the particles will be specified later. The Newton’s equation is solved
using the velocity Verlet algorithm, with a micro time step dt. The technique of cell
list is used to reduce the computational cost. The dynamic equation in the y-direction
(span-wise direction) is modified by adding a noise term and a damping term in order
to control the temperature.

Imposing constraints on MD represents the major difficulty in the multiscale
method. For the system considered here, we need to impose a given shear rate and
this is done by applying the Lees-Edwards boundary condition [9, 2] (see Fig. 3.2).
The left panel in Fig. 3.2 shows the initial configuration of the MD system. As the
simulation proceeds, the MD box deforms its shape based on the specified shear rate
A. Denote the coordinates of the box vertices by {(X;,Y;,Z;),j=1,2,---,8}, then the
dynamics of the box is governed by:

X;=AZ;, Y;=2;=0. (3.5)

The middle panel of the figure shows a snapshot of the deforming box. At the time
when the vertices of the deforming box coincide with the vertices of the lattice defined
by the initial box, as shown in the right panel of Fig. 3.2, we reinitialize the simulation
by periodically shifting the particles back to the initial box. Note that this reinitial-
ization does not change the configuration of the system. Periodic boundary condition
for particle positions is applied on the deforming box, that is, when a particle crosses
a boundary, we put it back into the box from the opposite side, and at the same time
modify its velocity according to the imposed velocity gradient. This is illustrated in
the middle panel of Fig. 3.2.

We summarize the computation procedure in the following algorithm:

(0). Given the initial velocity {u?=0,i=0,1,---,1}, and initial configuration of
the MD system in each fiber, let k=0;

(1). Compute the shear rates {Aﬁrl/Q,i =0,1,---,] — 1} according to Eq. (3.4);

(2). Solve the MD systems for one step with step size 0t, and compute the shear
stress 7'1.73rl /2 using the Irving-Kirkwood formula. The MD in v;4/2 is con-

strained by Afﬂ/? ;
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Fic. 3.3. Numerical results for the LJ fluid. Solid curves are numerical solutions to the
multiscale model; dashed curves are the solutions to the Navier-Stokes equation. The upper panel
shows the velocity profile at different times: t=1.25x 105,2.5 x 10%,3.75 x 10° and 5 x 10° from the
bottom to the top respectively. The lower panel shows the mass flux density as a function of the
driving force.

(3). Using Eq. (3.2) and the stresses calculated in step (2), solve the macroscale
model for one step with step size At' = At/M to get uf“;
(4). Let k:=k+1 and go to step (1).

The parameters At and ¢t should be chosen according to the timescale of the hy-
drodynamics and the fast molecular motions, respectively. The parameter M, which
is the number of MD steps conducted per macro time interval At, depends on the
molecular relaxation time. Further discussions on the choice of M will be given in the
last section.

3.2. Application to a simple fluid. In this example, the fluid consists of
particles of equal mass m interacting via the Lennard-Jones (LJ) potential:

VL‘](T)=46<(%)12— <%6)> (3.6)
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where 7 is the distance between particles, ¢ and ¢ are characteristic energy and length
scales. In the following, we express all physical quantities in these atomic units, e.g.
the unit of length is o, the unit of time is o4/m/e, the unit of density is m/o?3, the
unit of temperature is €/kp where kp is the Boltzmann constant, and etc.

The size of the channel is L =103. The external force is f(t) =2 x 10~%¢. The spa-
tial domain is discretized into I =19 cells. The macro time step is At' = A¢t/M where
At=>500 and M =40. The parameters used in the MD systems are as follows: Each
MD system contains N =9072 particles; the initial simulation box has the dimension
115.6 x 7.51 x 12.87; the particle density is p=0.81; the temperature is T'=1.1; the
micro time step is 0t =0.005.

The numerical results are shown in Fig. 3.3. The upper panel shows the snapshot
of the velocity profile at several different times (solid curves). The lower panel shows
J=L"1 fOL pudz, the averaged mass flux density across the channel, as a function of
the driving force f. The small wiggles in the velocity profiles are due to statistical
errors in the measured stress, which can be reduced by increasing the size of the MD
system, and/or by using a larger value of M.

For simple LJ fluids, the Navier-Stokes (NS) equation, in which the stress is
modeled by the linear constitutive equation, is an accurate model for describing the
dynamics. For the channel flow considered in this example, the NS equation reduces
to

pOu=pdu+ f(t) (3.7)

where p=0.81 and p=2.0 corresponding to our MD system. The solution to this
continuum equation is shown in Fig. 3.3 as the dashed curves. They are in good
agreement with the results of the multiscale method.

3.3. Application to a polymer fluid. Next we consider polymer fluids. At
molecular scale, the polymers are modeled by the bead-spring model: Each polymer
consists of m beads, neighboring beads are connected by a spring force which is
modeled by the FENE potential:

2
L2 S
VFENE(’I")Z 2]67"0111(1 (To) ), r<ro, (38)
00, 2T

where k=30 and ro =1.5. To prevent the beads from overlapping, the LJ potential is
added to the interactions among all beads.

The size of the channel, the driving force and At remain the same as before.
Since the polymers have a larger relaxation time than LJ particles, we used a larger
value for M: M =200. Each MD system contains N, =800 polymers. Each polymer
has m=12 beads of the same mass. The initial simulation box has the dimension
45.6 x 22.8 x 11.4. The density of beads is p=0.81. The temperature is T'=1.1. The
MD time step is ¢ =0.002.

The numerical solutions to the multiscale model are shown in Fig. 3.4. The upper
panel shows the velocity profiles at different times. The solid curves are obtained
using the algorithm in which the macro model is solved with the reduced step size
At' = At/M and it exchanges data with the micro model at every time step; the
dashed curves are obtained using the scheme in which the macro model is solved with
the time step At and it exchanges data with the micro model for every M micro steps.
These two schemes are illustrated in Fig. 2.1. As we expected, the results obtained
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Fia. 3.4. Numerical results for the polymer fluid. Upper panel: the velocity profile at different
times: t=3x10%,5x10°%,7 x 10° and 9 x 10° from the bottom to the top respectively. The solid and
dashed curves are obtained by using a macro time step At' = At/M and At respectively. Lower
panel: the mass flur density as a function of the driving force. For comparison, the mass flux
density for the LJ fluid is also shown here (the dashed curve). Inset: A log-log plot of the mass flux
density versus the driving force. A straight line of slope 1.42 is drawn for eye guidance.

using the reduced time step are much smoother. This is due to the fact that the data
calculated from MD are implicitly averaged over time, thus contain less statistical
errors.

The lower panel shows the averaged mass flux density as a function of the external
force. For comparison, the mass flux density obtained in the previous example for LJ
fluids is also shown (the dashed curve). The inset shows a log-log plot of the mass flux
of the polymer fluid versus the driving force. A straight line of slope 1.42 is drawn
for eye guidance. The logarithm of the mass flux follows closely this straight line,
which indicates the mass flux increases super-linearly with increasing driving force:
Joc f142. This is a consequence of the shear-thinning property of polymer fluids, and
is in contrast to simple fluids where the mass flux is a linear function of f.

4. Concluding Remarks
The choice of the parameter M is important to the success of the multiscale
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F1G. 4.1. Relative error of the computed mass fluz of polymer fluids at t=2.7 x 105 versus M,
the number of MD steps per macro time interval At.

method. This parameter should be chosen such that Mot is larger than the molecular
relaxation time. Figure 4.1 shows the dependence of the accuracy of the numerical
results on the choice of M. In this figure we plot the relative error of the computed
mass flux of the polymer fluids as a function of M. The error is defined as e;(M)=
|J(M)—Js|/Jso, where Jo is the mass flux density calculated using a large M:
M =400. As expected, the error decreases as M is increased and it levels off when
M >100. Therefore, for this system we need to conduct at least M* =100 MD steps
per macro time interval At in order to obtain accurate results. The computational
cost increases linearly with M.

In the multiscale model formulated in this paper, the stress needed in the macro
model is computed from MD “on the fly” as the computation proceeds. This is an
example of the concurrent coupling methods. An alternative is to use the sequential
coupling strategy, in which the constitutive relation is computed from MD beforehand,
then one solves the effectively closed macroscale model. This latter approach requires
pre-computing the full constitutive equation and is thus very often too expensive,
especially for problems in high dimensions where the constitutive relation depends on
many variables. In contrast, in concurrent coupling methods, one does not compute
the constitutive relation within the full range of these variables - only the values that
actually occur in the simulation are needed, and these might be a very small subset
of the entire range. Nevertheless, we would point out that the sequential coupling
strategy can still be made efficient even in situations when the constitutive relation
depends on many variables. But this requires more sophisticated techniques [10].

In this paper, we focused on the strategy for coupling the macroscale and mi-
croscale models. Another important issue in such a multiscale method is the imposi-
tion of constraints on molecular dynamics. In our numerical examples, the constraint
(shear rate) was imposed by applying the periodic boundary condition on a deforming
MD box. When applied to 2d or 3d flows, this technique has the following difficulty:
the MD box deforms exponentially fast, and the simulation breaks down when the
box size in certain direction decreases to the molecular interaction scale. This issue is
partially resolved for 2d time-independent problems [11, 12]. The resolution rests on
a clever choice of the initial simulation box. However, this kind of methods can not
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be applied to simulate 3d flows or impose time-dependent velocity gradients. These
problems will be studied in the future work.

In this paper, we considered the modeling of constitutive relations using MD
on fiber bundles. For problems with complex fluid-solid interactions or chemical
reactions, the conventionally used no-slip boundary condition becomes inaccurate. In
this situation, one can formulate and use a multiscale model to study the macroscale
behavior of the system, in a similar way as we did in this paper for complex fluids.
In the multiscale model, the boundary conditions will be computed from an atomistic
model, such as molecular dynamics.
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