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Abstract

Just as Lie groups can be understood through their Lie algebras, formal groups can be understood through
their associated Dieudonné modules. We’d like to mimic Lie theory, but over an arbitrary ring we don’t have
anything like the Baker-Campbell-Hausdorff formula at our disposal. Instead, we study the full group of formal
curves through the origin of our formal group, along with the actions of some geometrically-flavored endomor-
phisms as well as some purely algebraic Frobenius endomorphisms. This turns out to be enough structure to
give us an equivalence of categories between formal groups and Dieudonné modules.

In this talk, I’ll remind you why topologists care about formal groups, introduce the various algebraic objects
at play, and illustrate some rather striking classification results.

1 Introduction

1.1 Formal groups and Dieudonné modules

Lie theory teaches us that there is a lot of power in linearization. Namely, there is a diagram

LieGrp
H 7→ H̃- LieGrps.c.

Lie -
∼�

BCH
LieAlg

in which the functors Lie and BCH give inverse equivalences of categories. So given a connected Lie group, once we
strip away the global topology by passing to the simply connected cover, all the remaining information is encoded
in the linearization at the identity.

This is not so for abelian varieties over an arbitrary base ring R. The first problem is that their Lie algebras are
always commutative, so there’s no information left besides the dimension! Moreover, BCH requires denominators
that may not be available to us. Instead, completing an abelian variety at the identity yields what is known as a
formal group. This retains algebraic information while stripping away the global structure; every formal group is
isomorphic as a formal variety to formal affine space.

Now, recall that tangent vectors can be thought of as equivalence classes of curves. Rather than looking at
tangent vectors on a formal group G, then, we will study CG, the entire group of curves. This comes with various
endomorphisms – homotheties [a] for all a ∈ R, Verschiebungs Vn for n ≥ 0, and Frobenii (Frobeniuses?) Fn for
n ≥ 1 – which are natural and hence collectively determine endomorphisms of the functor C.

There is a subgroup DG ⊂ CG of p-typical curves, and when our ground ring is a Z(p)-algebra, CG splits as
an infinite product of copies of DG. The only remaining endomorphisms of DG are generated by Fp and Vp along
with the homotheties, and this structure makes DG into a Dieudonné module over R. In this p-local setting, we
then have an analogous diagram

AbVarR
Γ 7→ Γ∧e- FGrpR

D-
∼�
G

DieuModR

in which the functors D and G give inverse equivalences of categories.
This provides serious traction on the category of formal groups. Dieudonné modules pave the way for Dieudonné

crystals, which control deformations of formal groups away from characteristic p, and Dieudonné theory plays a role
in Wiles’ proof of Fermat’s last theorem.

1.2 Formal groups in topology

Recall that CP∞ carries the universal complex line bundle. This means that the universal pair of line bundles lives
over CP∞×CP∞; their tensor product, being a line bundle, is then classified by a map CP∞×CP∞ → CP∞. When
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we apply a complex-orientable cohomology theory E∗, E∗CP∞ ∼= E∗[[c]] and the above map induces a diagonal
E∗CP∞ → E∗CP∞ ⊗E∗ E

∗CP∞ that makes Spf E∗CP∞ into a 1-dimensional commutative formal group. (In
these cases, c is known as a generalized first Chern class.) For example, integral cohomology yields the additive
formal group since c1(L1 ⊗ L2) = c1(L1) + c1(L2), and complex K-theory yields the multiplicative formal group.

One can ask whether a formal group over a ring R comes from a complex-oriented cohomology theory; a satis-
factory answer is provided by the Landweber exact functor theorem, which essentially says that R must additionally
be a flat comodule for the Hopf algebroid of universal homology cooperations for complex-oriented theories. (This
should at least have a ring of truth to it, since Comod(MU∗,MU∗MU) and QCohMFG

are 2-categorically equivalent.)
So, the question becomes: What formal groups are there, anyways?

2 Formal geometry

We quickly cover a few preliminaries. Throughout, let R be a ring.
An adic R-algebra is an augmented R-algebra ε : A → R. The powers of the augmentation ideal J(A) = ker ε

define a complete and separated topology on A, and the category AdicR consists of adic R-algebras and continuous
maps. We write Spf A = HomAdicR

(A,−) for “formal Spec”. In particular,

HomAdicR
(R[[x1, . . . , xn]], A) = Homcts

R (R[[x1, . . . , xn]], A) ∼= J(A)n

and so we call Spf R[[x1, . . . , xn]] the formal affine n-plane ÂnR; we also define Â∞R = colim ÂnR. Then, the category

FVarR of formal varieties over R has for objects the functors V : AdicR → Set∗ isomorphic to ÂnR for some
n ∈ [1,∞], and has for morphisms the natural transformations between these functors. The number n is called the

dimension of V . An isomorphism ÂnR → V is called a parametrization, and an isomorphism V → ÂnR is called a
coordinate. Via parametrizations and coordinates, morphisms between finite-dimensional formal varieties are given
by tuples of multivariate power series with no constant terms.

A formal group over R is a group object G ∈ FVarR. A formal group law is a formal group G along with a
specified isomorphism G ∼= ÂnR as formal varieties. Via parametrizations and coordinates, a formal group law of

dimension n determines a morphism F ∈ HomFVarR(Â2n
R , ÂnR), that is, an n-tuple of 2n-variate power series. We

often write F (x, y) = x+F y.

Example 1. The additive formal group Ĝa is given by Ĝa(A) = J(A), with addition coming from addition in A.

The identity J(A)→ J(A) determines a parametrization γ : Â1
R → Ĝa. Then, x+Ĝa

y = x+ y.

Example 2. The multiplicative formal group Ĝm is given by Ĝm(A) = (1 + J(A))×, with addition coming from

multiplication in A. We can define a parametrization γ : Â1
R → Ĝm by γ(t) = 1−t. Then, x+Ĝm

y ↔ (1−x)·(1−y) =
(1− x− y + xy)↔ x+ y − xy.

All our formal groups will be commutative.

3 The group of formal curves

3.1 The functor of formal curves and its endomorphisms

Suppose we have a formal group G over a ring R. We define the group of formal curves on G by CG = CRG =
HomFVarR(Â1

R, G). This defines a functor CR : FGrpR → Grp via addition on the target.
The group CRG comes with a number of endomorphisms, which are natural and hence induce endomorphisms

of the functor CR.

1. homothety: Given a ∈ R, the curve [a]γ is given by precomposition with Â1
R
t7→at−→ Â1

R.

2. Verschiebung: For each n ≥ 0, the curve Vnγ is given by precomposition with Â1
R
t7→tn−→ Â1

R.

3. Frobenius: For each n ≥ 1, if we let ζ denote a primitive nth root of unity, then the curve Fnγ is given by
the expression

(Fnγ)(t) =

n−1∑
j=0

Gγ(ζjt1/n)
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(where ΣG denotes summation with respect to the group operation of G). A priori this is a power series in
t1/n and involves ζ, but the group axioms and the basic arithmetic of roots of unity will imply that this is
again an element of CG.

Example 3. If G = Ĝa is the additive formal group and γ(t) =
∑∞
k=1 bkt

k (in the canonical coordinate), then

(Fnγ)(t) =

n−1∑
j=0

Gaγ(ζjt1/n) =

n−1∑
j=0

∞∑
k=1

bkζ
jktk/n =

∞∑
k=1

n−1∑
j=0

ζjk

 bkt
k/n =

∞∑
d=1

nbdnt
d

since the sum of powers of ζ vanishes unless k = dn, in which case it equals n.

Proposition 1. The endomorphisms of CRG obey the following relations:

1. Fm ◦ Vn = Vn ◦ Fm whenever (m,n) = 1.

2. Fn ◦ Vn = nG (i.e. n-fold formal addition on G).

3. Fm ◦ Fn = Fmn.

4. Vm ◦ Vn = Vmn.

5. Fn ◦ [a] = [an] ◦ Fn.

6. [a] ◦ Vn = Vn ◦ [an].

Checking these is routine. For instance, [a] ◦ Vn is given by precomposition with Â1
R
t7→at−→ Â1

R
t 7→tn−→ Â1

R, which

equals the composition Â1
R
t7→tn−→ Â1

R
t 7→ant−→ Â1

R, and precomposition with this gives Vn ◦ [an].

3.2 Witticism

The big Witt scheme W is a ring scheme which is isomorphic as a scheme to Spec Z[x1, x2, . . .]. A sequence
(a) = (a1, a2, . . .) ∈ W(R), called a big Witt vector, corresponds to the power series

∏∞
k=1(1 − akxk); under this

correspondence, addition of Witt vectors corresponds to multiplication of power series. Thus by definition,

∞∏
k=1

(1− (a+W(R) b)kx
k) =

( ∞∏
k=1

(1− akxk)

)
·

( ∞∏
k=1

(1− bkxk)

)
.

(There is a bijective correspondence between power series in this form and power series in the usual form that
have constant term 1.) The multiplication is more difficult to describe, but it’s also naturally defined. This is a
generalization of the construction of the p-adics: W(Fp) = Zp.

Completing W at the origin gives us Ŵ, the Witt formal group, which is isomorphic as a scheme to Spf Z[[x1, x2, . . .]]

and has addition defined in the analogous way. So Ŵ is an infinite-dimensional formal group over Z, and base-
changing to a ring R gives us a formal group over R that we will call ŴR.

There is a distinguished curve γ1(t) = (t, 0, 0, . . .) ∈ CRŴR, and we readily compute that

(Fnγ1)(t) = (t1/n, 0, . . .) +ŴR
(ζt1/n, 0, . . .) +ŴR

. . .+ŴR
(ζn−1t1/n, 0, . . .)

↔ (1− t1/nx) · (1− ζt1/nx) · . . . · (1− ζn−1t1/nx)

= 1− txn

↔ (0, . . . , 0, t, 0, . . .)

(where the t is in the nth slot).

Theorem 1 (Dieudonné). If G ∈ FGrpR, then there is an isomorphism of groups HomFGrpR
(ŴR, G) → CRG

given by f 7→ f ◦ γ1. That is, HomFGrpR
(ŴR, G) ∼= HomFVarR(Â1

R, G); one says that ŴR is the free formal group

on the formal line Â1
R. The inverse is given by taking a curve γ : Â1

R → G to the homomorphism f : ŴR → G
given by

f =

∞∑
k=1

G(Fkγ) ◦ πk,

where πk : ŴR → Â1
R is the kth projection.
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Since CRG ∼= HomFGrpR
(ŴR, G), it follows that

EndFun(FGrpR,Grp)(CR) ∼= EndFGrpR
(ŴR) = HomFGrpR

(ŴR, ŴR) ∼= CRŴR.

That is, the endomorphisms of the functor CR are precisely given by the curves on ŴR. It takes a little of work (and

I haven’t even told you the multiplication on Ŵ!), but this ends up naturally endowing CRG with the structure of a
W(R)-module. Explicitly, extending the R-action via homotheties is a ring homomorphism E : W(R)→ End(CR)
given by (a) 7→

∑∞
k=1 Vk ◦ [ak] ◦ Fk.

4 The group of p-typical formal curves

4.1 The functor of p-typical formal curves and its endomorphisms

Let us from now on focus on the situation where R is a Z(p)-algebra, which will simplify the story considerably.
We call a curve γ ∈ CG p-typical if Fnγ = 0 whenever n is not a power of p. These form a subgroup DG ⊂ CG.
Clearly the Frobenius endomorphisms Fn : CG→ CG descend to Fn : DG→ DG, but they’re all zero by definition
besides Fpk . Since Fpk = (Fp)

k, we simply write F for Fp and call this “the” Frobenius endomorphism on DG.
Next, by the relations on endomorphisms, homotheties preserve p-typicality too. Lastly, we retain the Verschiebung
endomorphism Vp (and its iterates): if n = mpk with (m, p) = 1 and m > 1, then Fn(Vpγ) = FpkFmVpγ =
FpkVpFmγ = 0. We simply call this V .

4.2 p-typical Witticism

The p-typical Witt scheme Wp is also a ring scheme which is isomorphic as a scheme to Spec Z[x0, x1, . . .], but of

course with a different ring structure from W. As before, the p-typical Witt formal group Ŵp is the completion of

Wp at the origin, and we can base-change to obtain a formal group (Ŵp)R over R. The ring scheme Wp (and hence

the formal group Ŵp) comes with two special endomorphisms, the Verschiebung V : Wp →Wp and the Frobenius
ϕ : Wp →Wp.

There is always an epimorphism of ring schemes ρ : W → Wp given by (a1, a2, . . .) 7→ (a1, ap, ap2 , . . .). When
R is a Z(p)-algebra, this actually admits a splitting θ : Wp → W, which gives us an isomorphism WZ(p)

∼=∏
(n,p)=1(Wp)Z(p)

. Thus by Dieudonné’s theorem, CRG ∼=
∏

(n,p)=1 HomFGrpR
((Ŵp)R, G). So CRG is determined

by HomFGrpR
((Ŵp)R, G).

There is a distinguished p-typical curve γ0 = ρ ◦ γ1 ∈ D(Ŵp)R.

Theorem 2 (p-typical Dieudonné). If R is a Z(p)-algebra and G ∈ FGrpR, then there is an isomorphism of groups

HomFGrpR
((Ŵp)R, G)→ DG given by g 7→ g◦γ0. Moreover, F on curves corresponds to V on Ŵp, and if p = 0 ∈ R

then V on curves corresponds to ϕ on W.

Much like before, this all implies that DG is a Wp(R)-module determined by a ring homomorphism Ep :
Wp(R)→ End(D) given by (a) 7→

∑∞
n=0 V

n ◦ [an] ◦Fn. Unfortunately, F and V are not Wp(R)-linear; however, in
the case that R is an Fp-algebra, F ◦Ep(a) = Ep(ϕ(a))◦F and V ◦Ep(ϕ(a)) = Ep(a)◦V . Thus, what we in fact have
are Wp(R)-module homomorphisms F : DG→ ϕ∗DG (or equivalently F : ϕ∗DG→ DG) and V : ϕ∗DG→ DG.

4.3 Dieudonné modules

We are now nearly equipped to finally define Dieudonné modules. We first need two definitions. Let M be an
abelian group and V : M →M be a homomorphism. Then M is called reduced (with respect to V ) if

M ∼= lim
←
M/V kM,

and M is called uniform (with respect to V ) if

V k : M/VM → V kM/V k+1M

is an isomorphism for all k ≥ 1. It is a fact that for any formal group G over a Z(p)-algebra R, DG is uniform and
reduced with respect to the Verschiebung.
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Now, if R = K is actually a perfect field of characteristic p, then for any Wp(K)-module M we have an iso-
morphism M ∼= ϕ∗M , which implies that HomWp(K)(ϕ∗M,M) ∼= HomWp(K)(M,ϕ∗M). Moreover, by the universal
relations we always have FV = pG, and it turns out that V F = pG iff p = 0 ∈ R. Thus we finally define a
Dieudonné module over a perfect field K of characteristic p to be a Wp(K)-module M equipped with Wp(K)-linear
maps F : ϕ∗M � M : V such that FV : M → M and V F : ϕ∗M → ϕ∗M are both multiplication by p and such
that M is uniform and reduced with respect to V .

However, if R is only a Z(p)-algebra then the situation is slightly trickier. We define the Cartier algebra Cartp(R)
of R to be the ring generated by the symbols V , F , and [a] for a ∈ R, subject to the universal relations spelled out
above (as well as one more that won’t matter to us). This admits embeddings R→Wp(R)→ Cartp(R). We define
a Dieudonné module over R to be a Cartp(R)-module which is reduced and uniform with respect to V ∈ Cartp(R)
and such that M/VM (the “tangent space” TeG) is a free R-module. This of course agrees with the previous
definition.

We now come to the main theorem.

Theorem 3. Let R be a Z(p)-algebra. Then D : FGrpR → DieuModR is an equivalence of categories.

Idea of proof. In the slightly simpler case that R = K is a perfect field of characteristic p, we define a functor
G : DieuModK → FGrpK by assigning to any M ∈ DieuModK the functor G(M) taking A ∈ AdicK to the
abelian group

G(M)(A) = Ŵp(A)⊗Wp(K) M/(V a⊗m− a⊗ Fm,ϕa⊗m− a⊗ V m).

(This respects the correspondence given in the p-typical Dieudonné theorem.)

We will see that in the special case that R = K is a perfect field of characteristic p, this reduces to a particularly
nice classification theorem. First, we’ll run a few warm-up examples to get a sense of what’s going on.

Example 4 (the additive group). Recall that Ĝa(A) = J(A) with addition coming from addition in A. We can

canonically choose the identity γ : Â1
R → Ĝa as a parameter. We compute that for n > 1,

(Fnγ)(t) =

n−1∑
j=0

Ĝaζjt1/n = 0,

so γ is p-typical for any p. The parameter γ is represented by

∞∑
k=1

Ĝa(Fkγ) ◦ πk = π1 : Ŵ→ Ĝa,

and (V γ)(t) = tp. Thus

DĜa ∼=

{ ∞∑
k=0

Ĝa(V k ◦ [ak])(γ)

}
=

{ ∞∑
k=0

akt
pk

}
as sets. If R = K is a perfect field of characteristic p, then

DĜa ∼=
∞∏
k=0

V k ·K

as Dieudonné modules, where F acts trivially and Witt vectors act through the projection π1 : Wp(K)→ K.

Example 5 (the multiplicative group). Recall that Ĝm(A) = (1+J(A))× with addition coming from multiplication

in A. If we choose the parameter γ : Â1
R → Ĝm given by γ(t) = 1− t and let ζ denote a primitive nth root of unity,

then

(Fnγ)(t) =

n−1∑
j=0

Ĝmγ(ζjt1/n) =

n−1∏
j=0

(1− ζjt1/n) = 1− t = γ(t).

So the homomorphism f : Ŵ→ Ĝm representing γ is given by

f(a) =

∞∑
k=1

Ĝm(Fkγ) ◦ πk(a) =

∞∏
k=1

γ(ak) =

∞∏
k=1

(1− ak);
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if we write q(a)(x) =
∏∞
k=1(1− akxk) for the power series associated to (a), then f(a) = q(a)(1). This parameter γ

isn’t p-typical, but we can obtain a p-typical parameter γ̃ as

Â1 γ0−→ Ŵp
θ−→ Ŵ f−→ Ĝm.

This will have F γ̃ = γ̃, which implies that V γ̃ = V ◦ F γ̃ = pγ̃. So, over any Z(p)-algebra R, DĜm is free of rank 1
over Wp(R) generated by γ̃ with F γ̃ = γ̃ and V γ̃ = pγ̃.

In particular, Ĝa 6∼= Ĝm over a perfect field of characteristic p, and hence over any Z(p)-algebra which projects

down to such a field. This is a nontrivial fact! (As it turns out, Ĝa and Ĝm are isomorphic iff we’re over a Q-
algebra.) The height of a 1-dimensional formal group G is by definition the (“total”) rank (i.e. the minimal number

of generators) of DG as a Wp(R)-module, so ht(Ĝa) = rkWp(R)DĜa =∞ and ht(Ĝm) = rkWp(R)DĜm = 1.

4.4 Classification theorems

First, we describe the possible types of Dieudonné modules over a perfect field of characteristic p.

Theorem 4. Suppose K is a perfect field of characteristic p, and let M be a Dieudonné module over K of dimension
1 (so that M corresponds to a 1-dimensional formal group). Then either

• there is a non-zero element γ ∈M such that pγ = 0, in which case M ∼= DĜa and ht(M) =∞, or

• M is free of finite rank h over Wp(K), so ht(M) = h.

Then, there is the following existence result.

Theorem 5. Over a perfect field K of characteristic p, there is a 1-dimensional Dieudonné module Mh of each
height h ∈ [1,∞].

Even better, there is the following partial uniqueness result.

Theorem 6. If K = K, then height is a complete isomorphism invariant of one-dimensional formal groups over
K: for any M ∈ DieuModK , M ∼= Mht(M).

This last theorem is proved by beginning with an arbitrary formal group G of height h with an arbitrary
parameter γ : Â1

K → G and attempting to define a new parameter γ̃ : Â1
K → G with respect to which DG ∼= Mh.

The parameter γ is inductively improved towards γ̃ by solving polynomials in K, so the fact that K = K guarantees
that the process runs without a hitch.

On the other hand, if K 6= K, then this total classification won’t hold in general. Suppose we have a formal
group G over K of height h. If we denote by Γh the formal group associated to Mh, then we have an isomorphism
G ∼= Γh over K, and this isomorphism will descend to K iff it is invariant under Gal(K/K). This leads to a bijection

FGrpht=h
K /iso. ∼= H1(Gal(K/K),Aut(Γh)),

which is a tantalizing classification indeed.

5 Topological conclusions

There are a great many connections back to topology. First of all, p-typical formal group laws over a Z(p)-algebra are
also classified by their p-series pF (x) = x+F . . .+F x. Writing L for the Lazard ring, the coefficients of the universal
p-series over L ⊗ Z(p) are exactly the (Kudo-Araki) generators vn of BP∗ ∼= Z(p)[v1, v2, . . .]. This is no accident.
The moduli stack of formal groups MFG is the stackification of the groupoid scheme (Spec MU∗,Spec MU∗MU),
and the p-localization of MU splits as a wedge sum of copies of BP .

Moreover, equivalences of fibered categories yield equivalent stacks. This is an important technique. For
instance, Zink defined a certain generalization of Dieudonné modules, called displays, which classify p-divisible
groups: if we write Mp(h) for the moduli stack of p-divisible groups of height h, there is a Hopf algebroid (Ah,Γh)
with stackification M(Ah,Γh) 'Mp(h). Meanwhile, for a map Spec R→Mp(h), a theorem of Lurie gives sufficient
conditions to produce a sheaf of E∞ ring specta E over SpecR realizing the formal group classified by the composition
Spec R→Mp(h)→MFG (where the latter map is completion at the identity). Unfortunately, these conditions are
in general quite difficult to verify. However, Lawson combined these two to give a much more tractable condition:
for h ≥ 2 there is a canonical map Spec Ah → Ph−1, and given a map Spec R → Spec Ah classifying a nilpotent
display, the conditions of Lurie’s theorem are satisfied iff the composition Spec R → Spec Ah → Ph−1 is formally
étale. Lawson successfully exploited this framework to construct ring spectra of chromatic height 2 and above.
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