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Abstract.

1. Introduction

2. Starting point: families of elliptic curves

Start by saying: we are interested in families of elliptic curves, for
example families of a riemann surface. To make the notation consistent,
we should therefore think of a ’normal’ elliptic curve over C as a ’family
over a point’. We start by defining and giving examples of some families
of elliptic curves.

Let R be a commutative unital ring. An elliptic curve over R is given
by an equation y2 = x3 +Ax+B where A, B are a pair of elements A,

B ∈ R such that ∆
def
= −16(4A3 − 27B2) is a unit in R, together with

a ‘point at infinity’which is the identity for the group law.
Example: Let R = C, then an elliptic curve is given by the data of

a pair of complex numbers A and B such that the discriminant does
not vanish. This defines an elliptic curve as the projective closure of
the affine curve given by the eauqtion y2 = x3 +Ax+B inside C×C.

Example: R = Q, A = 2, B = 3. Then ∆ = −4400 is a unit, so we
obtain an elliptic curve given by the equation

(1) y2 = x3 + 2x+ 3.

Example: Let R = Z[1/2, 1/5, 1/11], A = 2, B = 3. Then ∆ =
−4400 = −24 · 52 · 11 is a unit, so so obtain an elliptic curve given by
the equation

(2) y2 = x3 + 2x+ 3.

Example: Let A,B ∈ C[t], and set R = C[t]∆, the localisation
of C[t] by the multiplicatively closed set {∆n : n ∈ Z}. This defines
an elliptic curve over R. It is cut out in P2

R by the equation y2 =
x3 + Ax + B. The important point is this: let t0 be any complex
number such that ∆(t0) 6= 0. Then A(t0), B(t0) defines an elliptic
curve over C. In other words, we have specified a family of elliptic
curves over the complex plane minus a few points (the points where ∆
vanishes.
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We can think of this as a non-compact Riemann surface S (the com-
plex plane minus the roots of ∆, together with a closed map from a
2-complex dimsnaional complex manifold E to S. The fibre of this
map over a point t0 in C is exactly the elliptic curve given by y2 =
x3 + A(t0)x+B(t0).

From now on, we will mainly be interested in this example and vari-
ations.

Example of the example: Let A = 0, B = t. Then ∆ = 16 · 27t2,
which vanishes exactly when t = 0. As such, we have defined a family
of elliptic curves over the punctured complex plane.

2.1. Notational confusion. We will write E/R for an elliptic curve
over the ring R. However, above we said that an elliptic curve E/C[t]
can be though of as a family of elliptic curves over the Riemann surface
whose complex points are exactly elements of C. Now clearly and ellip-
tic curve over C and an elliptic curve over C[t] are completely different;
for example, the former has dimension 1 as a complex manifold, and
the latter has dimension 2. We therefore need to be careful that when
we write E/C we mean an elliptic curve over the ring C, NOT a family
of elliptic curves over the Riemann surface which looks like C.

Since the Riemann surfaces we will consider will for now all be punc-
tured versions of the complex plane, we can avoid this confucion by
sticking rigidly to our notation that E/R means an elliptic curve over
the ring R, and if S is a complex plane punctured at the roots of a
polynomial f then an elliptic curve over S is the same as an ellip-
tic curve over C[t][f−1]. In general, this confusion is unfortunate but
unavoidable.

Two obvious questions:
1) Can we give some kind of ‘uniform description of all of these

families of elliptic curves over punctured complex planes?
2) What about the ‘missing points’ where ∆ vanished - can we ‘fill

these in’ to get an elliptic curve over the whole complex plane?

3. Question 1: seeking a uniform description

What would an answer to this question look like? It will be a punc-
tured plane Y and an elliptic curve Euniv/Y (as in our examples above)
with the property that for S = Spec(C) (a point) or any punctured
plane with an elliptic curve E/S, there exists a unique map φ : S → Y
such that the following square is Cartesian in the category of complex
manifolds:[*1]

1: need a

remark that an
elliptic curve

over C is an
alliptic curve
over a point,
SpecC.

E //

��

Euniv

��
S // Y
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[Recall the definition of a Cartesian square via the univeral property:

In other words, E = S ×Y Euniv. ]

Remark 1. It turns out that this is impossible; we are trying to repre-
sent a functor that is not a sheaf in the fpcq topology, which is impossi-
ble. This can be rectified by imposing a ‘level structure’ on our elliptic
curves - essentially fixing certain torsion points in order to pin down
their automorphisms. However, in these lectures we will not worry
about this issue.

3.1. Properties of the universal elliptic curve.

Lemma 2. Suppose that Euniv/Y exists as above. Then
1) for all elliptic curves E/C, there exists a unique point pE in Y

such that the fibre of Euniv over pE is isomorphic to E as a complex
manifold.

2) for every point q ∈ Y , the fibre (Euniv)q is an elliptic curve.

Proof. Existance: Given an elliptic curve E/C defined by A, B ∈ C,
the universal property yields a cartesian square

E //

��

Euniv

��
Spec(C)point // Y.

Writing q for the image of the given map Spec(C) → Y , we see that
by definition the fibre of Euniv over q is E.

Uniqueness: If two points q1 and q2 of Y have fibres isomorphic to E,
then E can be constructed as either Spec(C)×q1,Y Euniv or Spec(C)×q2,Y
Euniv, contridicting the uniqueness part of the universal property of Y .

2) From the definition of elliptic curves and pullbacks, we see that
Euniv is defined by two elements Auniv, Buniv ∈ C[t], and we have the
discriminant polynomial ∆univ ∈ C[t]. THe point q corresponds to a
complex number which we shall also write as q, and moreover we know
that ∆(q) 6= 0, henve Auniv(q), Buniv(q) defines an elliptic curve over
C. �

Summarising this lemma, we see that the universal elliptic curve (if it
exists) is a 2-dimensional comples manifold with a map to a punctured
complex plane, with the property that

- the fibre over each point is a complex elliptic curve
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- every elliptic curve over C appears exactly once as such a fibre.

3.2. Algebraic construction of the universal elliptic curve.

3.2.1. Definition of the j-invariant.

Definition 3. Given an elliptic curve E over a ring R defined by y2 =
x3 + aX +B, the j-invariant of E is given by

(3) j(E) = −1728(4A)3/∆.

Note that j(E) ∈ R since ∆ is a unit.

Lemma 4. Let R = C. Then two elliptic curves E1, E2 over R are
isomorphic if and only if j(E1) = j(E2).

Proof. This is elementary, and is Proposition 1.4 b of [Silverman, Topics
in the arithmetic of elliptic cuvres]. �

Lemma 5. Let R = C[t][1/t, 1/(t − 1728)], and let E be given by
A12 · 272t/(t− 1728), B = −54 · 216 · 27t/(t− 1728). Then we almots
have E = Euniv, in the sense that for any elliptic curve E0/C with
j(E0) 6= 0, 1728 we have a unique point q0 in C \ {0, 1728} such that
the fibre of E over q0 is isomorphic to E0.

Proof. We should begin by checking that E/R is an elliptic curve,
namely that the discriminant is a unit. An easy calculation [Exercise]
yields that

(4) ∆ = t2/(t− 1728)3

up to a constant. A smilar calculation [Exercise] also shows that

(5) j(E) = t

(up to a constant).
The result is now easy; for any E0 as in the statement, we simply

take q0 to be the point of the punctured complex plane corresponding
to the j-invariant of E0, and we know the fibre of E over q0 must have
the same j-invariant as E0, so by the previous lemma we know it is
isomorphic to E0.

�

3.3. Compactification of the moduli space. In this section, we
will sketch and argument using the fundamental group to show that it
is impossible to ‘fill in the holes’ in the universal elliptic curve.

For the remainder of this section, we will assume (pretend) that the
universal elliptic curve over R = C[t][1/t, 1/(t−1728)] exists and satis-
fies the universal property. This is not quite true, but it does not matter
for the purposes of our argument; either enhance the moduli space with
a level structure or just take the underlying coarse moduli space, then
the argument that follows will go through almost unchanged.
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Proposition 6. There does not exist an elliptic curve Ẽuniv/P1 such
that

(6) Ẽuniv ×P1 R = Euniv.

We will prove this using a sequence of lemmas.

Lemma 7. Let S = C[t][1/t]. To prove Prop 6, it suffices to construct
an elliptic curve E/S such that there does not exist an elliptic curve
Ẽ/C[t] with

(7) Ẽ ×C[t] S = E.

Proof. Suppose we have such E/S, and the universal compactification
Ẽuniv/P1 exists. The universal property yields a cartesian square

E //

��

Euniv

��
S

φ // Y,

and extending φ to C[t] we obtain a compactification Ẽuniv ×Ỹ ,φ S of
E/S, a contradiction. �

Let E0/S be the elliptic curve given by A = 0, B = −t:
(8) y2 = x3 − t.
We will prove that there does not exist an elliptic curve E1/C[t] such
that E1 ×C[t] S = E0. FIrst we should point out that this statement is
not obvious; taking the naive limit of the family E0(t) as t → 0 does
not yield an elliptic curve, but (since the complex dimension of E0 is
greater than 1) this does not preclude the existence of E1.

We will suppose that such an E1 exists, and then study the torsion
and monodromy to derive a contradiction.

3.3.1. Torsion in families. Let E/R be any elliptic curve over a punc-
tured plane. Then given any integer n > 0, we define the n-torsion to
be the set of points p ∈ E which are n-torsion in the elliptic curves
in which they lie. Now the property ‘begin n-torsion’ is defined by a
collection of algebraic equations, and by writing down these equations
one can see that the set of n-torsion points forms a sub-manifold of E
(Exercise), which we denote E[n].

For example by looking at the Weierstrass uniformisation, one can
see that there are exactly n2 points in each fibre of E[n]. In particular
there are a finite number, so we obtain a cover of the punctured plane.
The key observation is that this is an unbranched cover (Exercise).

We can apply this argument to our elliptic curve E0, and also the
hypothetical compactification E1; we see that E0[2] is an unbranched
degree-4 cover of a punctured plane, and E1[2] is an unbranched degree-
4 cover of the whole complex plane (if it exists).
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3.3.2. Fundamental group. Let l be a loop going once around the
origin in the complex plane, parametrised by l(a) = e2πia for a ∈ [0, 1].
Let p0 ∈ E0 be the point given by t = 1, x = 1, y = 0, and similarly
p1 ∈ E1 be given by the same coordinates. It is easy to check that
p0 and p1 are 2-torsion in their respective families. Using that E0[2]
and E1[2] are both covering spaces of neighbourhoods of the loop l, we
apply path lifting starting at p0 and also at p1, obtaining paths l0 and
l1 respectively.

Now E1[2] is an unbranched cover over a contractible space, and
so the path l1 must in fact be a loop. On the other hand, we can
work out ‘by hand’ the path l0: since we must remain inside E0[2],
which is given by equations y = 0, x3 − t = 0 (Exercise), we can see
that x(l0(a)) = e2πia/3. In particular, l0 does not get back to where it
started, so is not a loop.

Now a contradiction is immediate; away from the origin in the com-
plex plane, E0 and E1 are the same, so it is impossible for a loop to lift
to a loop in E1[2] but not in E0[2]. Thus E1 cannot exist.

4. Next lecture:

The analytic version of theis story.
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