
Thick subcategories of perfect complexes over a commutative ring
Srikanth Iyengar

Let R a commutative noetherian ring and D the derived category of R-modules.
A perfect complex of R-modules is one of the form

0 → Ps → · · · → Pi → 0

where each Pi is a finitely generated projective R-module. Let P the full subcat-
egory of D consisting of complexes isomorphic to perfect complexes. These are
precisely the compact objects, also called small objects, in D.

These notes are an abstract of two lectures I gave at the workshop. The main
goal of the lectures was to present various proofs of a theorem of Hopkins [7] and
Neeman [8], Theorem 1 below, that classifies the thick subcategories of P, and to
discuss results from [5], which is inspired by this circle of ideas.

As usual Spec R denotes the set of prime ideals in R with the Zariski topology;
thus, the closed subsets are precisely the subsets Var(I) = {p ⊇ I |p ∈ Spec R},
where I is an ideal in R. A subset V of Spec R is specialization closed if it is a
(possibly infinite) union of closed subsets; in other words, if p and q are prime
ideals such that p is in V and q ⊇ p, then q is in V .

For a prime ideal p, we write k(p) for Rp/pRp, the residue field of R at p. The
support of a complex of R-modules M is the set of prime ideals

SuppR M = {p ∈ Spec R |k(p)⊗L
RM 6' 0}

In the literature, this is sometimes referred to as the homological support, while
the word ‘support’ refers to the set of primes p such that Mp 6' 0; this latter
set contains SuppR M , but is typically larger. They coincide when the R-module
H(M) is finitely generated, in which case SuppR M is a closed subset of Spec R.

With this notation, the theorem of Hopkins and Neeman is as follows.

Theorem 1. There is a bijection of sets{Thick subcategories
of P

}
S

//

T
oo

{Specialization closed
subsets of Spec R

}
where the maps in question are

S(T ) =
⋃

M∈T
SuppR M and T(V ) = {M | SuppR M ⊆ V }

Proof. Note that both S and T are inclusion reversing.
It is easy to prove ST(V ) = V when V ⊆ Spec R is specialization closed.
Indeed, it is clear from definitions that ST(V ) ⊆ V . Conversely, given p in

V , pick a set {x1, . . . , xn} which generates the ideal p, and let K be the Koszul
complex on x. It is readily verified that SuppR K = Var(x) = Var(p) ⊆ V , so K
is in T(V ), and hence p ∈ Var(p) = SuppR K ⊆ ST(V ). Therefore, V ⊆ ST(V ).

Let T be a thick subcategory of P. Evidently T ⊆ TS(T ), so it remains to
verify the reverse inclusion.
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Suppose M is in TS(T ), so that SuppR M ⊆ S(T ). Since the R-module H(M) is
finitely generated, SuppR M is a closed subset of Spec R, and hence it has finitely
many minimal primes. Therefore, there exist complex N1, . . . , Ns in T such that

SuppR M ⊆
s⋃

i=1

SuppR Ni = SuppR

( s⊕
i=1

Ni

)
.

It remains to invoke Theorem 2 below. �

In what follows, given complexes M and N in (some full subcategory) of D,
we say that N builds M , and write N =⇒ M if M is in the thick subcategory
generated by N ; when R needs to be specified, we write N =⇒

R
M .

Note that if N =⇒ M , then SuppR M ⊇ SuppR N .

Theorem 2. If M and N in P are such that SuppR M ⊆ SuppR N , then N =⇒
R

M .

There are (at least) three proofs of this theorem.

First proof of Theorem 2. This is due to Neeman. The basic idea is to classify
the localizing subcategories of D. These turn out to be in bijection with arbitrary
subsets of Spec R, see [8]. Hence, if SuppR M ⊆ SuppR N , then M is in the
localizing subcategory of D generated by N . Since M and N are both in P, they
are compact objects in D, so another result of Neeman’s [9, (2.2)], implies that M
is in fact in the thick subcategory generated by N . �

Second proof of Theorem 2. This is inspired by work of Dwyer and Greenlees [3].
Consider the DG algebra E = RHomR(N,N), the right E-module RHomR(N,M),
and the following natural morphism in D

θ : RHomR(N,M)⊗L
EN −→ M .

The point is that one knows a posteriori that θ represents the natural morphism
RΓI(M) → (M), where RΓI(M) is local cohomology with respect to the ideal I,
with SuppR N = Var(I). Thus, since SuppR M is contained in Var(I), it must be
that θ is an isomorphism. This can be proved directly, as follows:

An elementary calculation shows that the support of cone(θ) is a subset of
SuppR M ∪ SuppR N , and hence of SuppR N , by hypothesis. On the other hand,
RHomR(N, cone(θ)) ' 0, since RHomR(N, θ) is isomorphism, as can be easily
verified, keeping in mind that N is compact. Given this, it is not difficult to prove
that cone(θ) ' 0, so θ is an isomorphism.

Now, the R-algebra H(E) is noetherian, and H(RHomR(N,M)) is finitely gen-
erated over H(E), so in the derived category of right E-modules, one has that

RHomR(N,M) ' hocolim
n

Xn

where Xn is in the thick subcategory generated by E , that is to say, E =⇒
E

Xn.

Therefore, in D, one has isomorphisms

M ' RHomR(N,M)⊗L
EN ' hocolim

n

(
Xn⊗L

EN
)
,
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where the first isomorphism is θ, and the second one is obtained by base change.
Since M is compact, a standard argument yields that M is a retract of Xn⊗L

EN ,
for some N . It remains to note that by base change

E =⇒
E

Xn implies N =⇒
R

Xn⊗L
EN .

Therefore, M is in the thick subcategory generated by N , as desired. �

Third proof of Theorem 2. This proof is the original one, due to Hopkins [7], also
see [8], especially the discussion on the first page, and Thomason’s article [10].
The main step in it is the proof of the following ‘tensor-nilpotence’ theorem.

Theorem 3. Let α : X → Y be a morphism of perfect complexes. If for each p in
Spec R, one has H(k(p)⊗R α) = 0, then there exists an integer n ≥ 0 such that

αn = 0: X⊗n −→ Y ⊗n .

In my lectures, I discussed a proof of this result, and also Hopkins’ argument
for Theorem 2; see [7], [8], and [10]. �

Theorem 2 gives a new approach to some problems concerning descent of prop-
erties along a local homomorphism

ϕ : (Q, q, h) −→ (R,m, k) .

This notation means that Q and R are (commutative noetherian) local rings, with
maximal ideals q and m, residue fields h and k, and ϕ is a homomorphism of rings
with ϕ(q) ⊆ m. This is the context for the rest of this write-up.

It is a classical result, found already in Cartan and Eilenberg [2], that for any
R-module M , if flat dimQR and flat dimRM are both finite, then so is flat dimQM .
A complex over a ring is said to have finite flat dimension if it is isomorphic, in
the derived category of the ring, to a bounded complex of flat modules.

In [6], Foxby and I proved the following converse.

Theorem 4. Let M be a perfect complex of R-modules, with H(M) 6= 0.
If flat dimQM is finite, then flat dimQR is finite as well.

In [5], we use Theorem 2 to give a totally different proof of this result. The
argument requires the following basic facts.

(1) flat dimQR < ∞ if and only if sup(h⊗L
QR) = sup{n |Hn(h⊗L

QR) 6= 0} < ∞.
(2) The subcategory {X ∈ D(R) | sup(h⊗L

QX) < ∞} of D(R) is thick.
(3) Let K be the Koszul complex on a finite set of elements in R and Y be a

complex of R-modules such that the R-module Hn(Y ) is finitely generated
for each n. If sup(Y ⊗Q K) is finite, then sup(Y ) is finite.

Indeed, when flat dimQR is finite, it is clear that sup(h⊗L
QR) is finite. The

converse is a result of André, and is proved by a standard argument: since h is the
only simple Q-module, induction on length yields that sup(L⊗L

QR) is finite for any
finite length Q-module L. This is the basis of an induction on the Krull dimension
of L that proves that sup(L⊗L

QR) is finite for any finitely generated Q-module L,
and hence that flat dimQR is finite. This justifies the first claim.

3



The second claim is a straightforward verification. As to (3), the Koszul complex
on an element x of R is the mapping cone of the morphism R

x−→ R, so one obtains
an exact sequence of complexes

0 −→ Y −→ Y ⊗Q K −→ ΣY −→ 0 .

The homology long exact sequence and Nakayama’s lemma imply that when
sup(Y ⊗Q K) is finite, so is sup(Y ), as desired. The general case is settled by
an induction on the number of elements, for the corresponding Koszul complex
can be realized as an iterated mapping cone.

Proof of Theorem 4. Let K be the Koszul complex on a finite set of generators for
m. Since m is the unique closed point of Spec R, and SuppR M is a closed subset
of Spec R, Theorem 2 implies that M =⇒ K. In view of (2) above, this explains
the third implication in the chain below:

flat dimQN < ∞ =⇒ sup(h⊗L
QN) < ∞

=⇒ sup((h⊗L
QR)⊗L

RN) < ∞
=⇒ sup((h⊗L

QR)⊗L
RK) < ∞

=⇒ sup(h⊗L
QR) < ∞

=⇒ flat dimQR < ∞ .

The first implication is clear, the second one is by the associativity of tensor
products, the fourth follows from (3) above applied with Y = h⊗L

QR, while the
fifth is by (1). This completes the proof of Theorem 4. �

The paradigm of the preceding proof, see [5, (5.2)], is applicable to other ho-
mological invariants as well, and yields new results in commutative algebra, some
of which are not, as yet, accessible by more ‘traditional’ methods.

Note that the argument above allows for a stronger conclusion: all one needs
is that the thick subcategory generated by N contains a, homologically non-zero,
small (i.e., compact) object; in other words, N is virtually small, in the terminology
of [5]. This notion was suggested to us by the work in [4].

Evidently, any small object is virtually small; in [5], we identify various other
classes of virtually small objects. One noteworthy result in this direction is:

Theorem 5. Let R be a complete intersection local ring. Any complex M of
R-modules with H(M) finitely generated, is virtually small.

Compare this to the result that when R is a regular local ring, any complex
M of R-modules with H(M) finitely generated is small. This is one direction of
a theorem of Auslander, Buchsbaum, and Serre; the other direction asserts the
converse. We expect that the converse to the theorem above also holds, see [5, §9].

The notion of a virtually small object carries over to any triangulated category,
and the work in [4, 5] makes it is clear that it would be worthwhile to investigate
such objects. It is also useful to quantify the process of building one object from
another. This is being investigated in [1], where it provides the technical tools to
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bring to light an unexpected relationship between perfect complexes over a local
ring and free summands of its conormal modules.
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