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1. Introduction

Early in the history of homotopy theory, people noticed a number of phenomena suggesting that it would
be convenient to work in a context where one could make sense of negative-dimensional spheres. Let X be
a finite pointed simplicial complex; some of the relevant phenomena are as follows.

• For most n, the homotopy sets πnX are abelian groups. The proof involves consideration of Sn−2

and so breaks down for n < 2; this would be corrected if we had negative spheres.
• Calculation of homology groups is made much easier by the existence of the suspension isomorphism

H̃n+kΣkX = H̃nX. This does not generally work for homotopy groups. However, a theorem of
Freudenthal says that if X is a finite complex, we at least have a suspension isomorphism πn+kΣkX =
πn+k+1Σk+1X for large k. If could work in a context where S−k makes sense, we could smash
everything with S−k to get a suspension isomorphism in homotopy parallel to the one in homology.

• We can embed X in Sk+1 for large k, and let Y be the complement. Alexander duality says that

H̃nY = H̃k−nX, showing that X can be “turned upside-down”, in a suitable sense. The shift by k
is unpleasant, because the choice of k is not canonical, and the minimum possible k depends on X.
Moreover, it is unsatisfactory that the homotopy type of Y is not determined by that of X (even
after taking account of k). In a context where negative spheres exist, one can define DX = S−k ∧Y ;

one finds that H̃nDX = H̃−nX and that DX is a well-defined functor of X, in a suitable sense.
• The Bott periodicity theorem says that the homotopy groups of the infinite orthogonal group O(∞)

satisfy πk+8O(∞) = πkO(∞) for all k ≥ 0. It would be pleasant and natural to extend this pattern
to negative values of k, which would again require negative spheres.

Considerations such as these led to the construction of the Spanier-Whitehead category F of finite spectra,
which we briefly survey in Section 2. Although fairly straightforward, and very beautiful and interesting,
this category has two defects.

• Many of the most important examples in homotopy theory are infinite complexes: Eilenberg-
MacLane spaces, classifying spaces of finite groups, infinite-dimensional grassmannians and so on.
The category F is strongly tied to finite complexes, so a wider framework is needed to capture these
examples.

• Ordinary homotopy theory is made both easier and more interesting by its connections with geometry.
However, F is essentially a homotopical category, with no geometric structure behind it. This also
prevents a good theory of spectra with a group action, or of bundles of spectra over a space, or of
diagrams of spectra.

The first problem was addressed by a number of people, but the definitive answer was provided by Boardman.
He constructed a category B with excellent formal properties parallel to those of F , whose subcategory of
finite objects (suitably defined) is equivalent to F . A popular exposition of this category is in Adams’
book [1]. Margolis [15] gave a list of the main formal properties of B and its relationship with F . He
conjectured (with good evidence) that they characterise B up to equivalence. See [26] for some new evidence
for this conjecture, and [27] for an investigation of some related systems of axioms.

The second problem has taken much longer to resolve. There have been a number of constructions
of topological categories whose associated homotopy category (suitably defined) is equivalent to B, with
steadily improving formal properties [5,6,11,14]. There is also a theorem of Lewis [13] which shows that it is
impossible to have all the good properties that one might naively hope for. We will sketch one construction
in Section 4.
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2. The finite stable category

2.1. Basics. We first recall some basic definitions. In this section all spaces are assumed to be finite CW
complexes with basepoints. (We could equally well use simplicial complexes instead, at the price of having
to subdivide and simplicially approximate from time to time.) We write 0 for all basepoints, and we write
[A,B] for the set of based homotopy classes of maps from A to B. We define A∨B to be the quotient of the
disjoint union of A and B in which the two basepoints are identified together. We also define A∧B to be the
quotient of A×B in which the subspace A× 0∪ 0×B is identified with the single point (0, 0). This is called
the smash product of A and B; note that it is commutative and associative up to isomorphism and that
S0 ∧A = A, where S0 = {0, 1}. Moreover, A∧ (B ∨C) = (A∧B)∨ (A∧C) and [A∨B,C] = [A,C]× [B,C]
(so ∨ is the coproduct in the homotopy category of pointed spaces). We let S1 denote the quotient of [0, 1]
in which 0 is identified with 1, and we write ΣA = S1 ∧A. One can check that Σ sends the ball Bn to Bn+1

and the sphere Sn to Sn+1, and the reduced homology of ΣA is just H̃n(ΣA) = H̃n−1(A). Thus, we think
of Σ as shifting all dimensions by one.

The quotient space of S1 in which 1/2 is identified with 0 is evidently homeomorphic to S1 ∨ S1, so
we get a map δ : S1 −→ S1 ∨ S1 and thus a map δ : ΣA −→ ΣA ∨ ΣA. It is well-known that the induced
map δ∗ : [ΣA,B] × [ΣA,B] −→ [ΣA,B] makes [ΣA,B] into a group. There are apparently n different group
structures on [ΣnA,B], but it is also well-known that they are all the same, and they are commutative when
n > 1. We have an evident sequence of maps

[A,B]
Σ−→ [ΣA,ΣB]

Σ−→ [Σ2A,Σ2B] −→ . . . .

Apart from the first two terms, it is a sequence of Abelian groups and homomorphisms. By a fundamental
theorem of Freudenthal, after a finite number of terms, it becomes a sequence of isomorphisms. We define
[Σ∞A,Σ∞B] to be the group [ΣNA,ΣNB] for large N , or if you prefer the colimit lim

−→N
[ΣNA,ΣNB]. After

doing a little point-set topology, one concludes that this is the same as the set [A,QB], where QB =
lim
−→N

ΩNΣNB and ΩNC means the space of based continuous maps SN −→ C, with a suitable topology.

2.2. Finite spectra. One can define a category with one object called Σ∞A for each finite CW complex
A, and morphisms [Σ∞A,Σ∞B]. It is easy to see that Σ induces a full and faithful endofunctor of this
category. We prefer to arrange things so that Σ is actually an equivalence of categories. Accordingly, we
define a category F whose objects are expressions of the form Σ∞+nA where A is a finite CW complex and
n is an integer. (If you prefer, you can take the objects to be pairs (n,A).) We refer to these objects as finite
spectra. The maps are

[Σ∞+nA,Σ∞+mB] = lim
−→
N

[ΣN+nA,ΣN+mB].

Freudenthal’s theorem again assures us that the limit is attained at a finite stage. The functor Σ induces
a self-equivalence of the category F . There are evident extensions of the functors ∨ and ∧ to F such that
Σ∞A ∨ Σ∞B = Σ∞(A ∨ B) and Σ∞A ∧ Σ∞B = Σ∞(A ∧ B) (although care is needed with signs when
defining the smash product of morphisms). The category F is additive, with biproduct given by the functor
∨. The morphism sets [X,Y ] in F are finitely generated Abelian groups. One can define homology of finite
spectra by HnΣ∞+mA = Hn−mA, and then the map

H∗ : Q⊗ [X,Y ] −→
∏
n

Hom(Hn(X;Q), Hn(Y ;Q))

is an isomorphism. The groups [X,Y ] themselves are known to be recursively computable, but the guaranteed
algorithms are of totally infeasible complexity. Nonetheless, there are methods of computation which require
more intelligence than the algorithms but have a reasonable chance of success.
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2.3. Stable homotopy groups of spheres. Even the groups πSn = [Σ∞+nS0,Σ∞S0] are hard, and are
only known for n ≤ 60 or so (they are zero when n < 0). The first few groups are as follows:

πS0 = Z{ι}
πS1 = Z/2{η}
πS2 = Z/2{η2}
πS3 = Z/24{ν}
πS4 = 0

πS5 = 0

πS6 = Z/4{ν2}
Here ι is the identity map, and η comes from the map

η : S3 = {(z, w) ∈ C2 | |z|2 + |w|2 = 1} −→ C ∪ {∞} = S2

defined by η(z, w) = z/w. Similarly, ν comes from division of quaternions. The expression η2 really means
η ◦ (Ση), and ν2 means ν ◦ (Σ3ν).

Many general results are also known. For example, for any prime p, the p-torsion part of πSn is known for
n < 2p3 − 2p and is zero for n < 2p − 3 (provided n 6= 0). Both the rank and the exponent are finite but
unbounded as n tends to infinity. The group πS∗ is a graded ring, and is commutative in the graded sense.
An important theorem of Nishida says that all elements of degree greater than zero are nilpotent.

2.4. Triangulation. The category F is not Abelian. Instead, it has a triangulated structure. This means

that there is a distinguished class of diagrams of the shape X
f−→ Y

g−→ Z
h−→ ΣX (called exact triangles)

with certain properties to be listed below. In our case the exact triangles can be described as follows. Let
A be a subcomplex of a finite CW complex B, and let C be obtained from B by attaching a cone I ∧ A
along the subspace {1} × A = A. There is an evident copy of B in C, and if we collapse it to a point
we get a copy of ΣA. We thus have a diagram of spaces A −→ B −→ C −→ ΣA. We say that a diagram
X −→ Y −→ Z −→ ΣX of finite spectra is an exact triangle if it is isomorphic to a diagram of the form
Σ∞+nA −→ Σ∞+nB −→ Σ∞+nC −→ Σ∞+n+1A for some n ∈ Z and some A, B and C as above. Incidentally,
one can show that C is homotopy equivalent to the space B/A obtained from B by identifying A with the
basepoint.

The axioms for a triangulated category are as follows. In our case, they all follow from the theory of
Puppe sequences in unstable homotopy theory.

(a) Any diagram isomorphic to an exact triangle is an exact triangle.

(b) Any diagram of the form 0 −→ X
1−→ X −→ Σ0 = 0 is an exact triangle.

(c) Any diagram X
f−→ Y

g−→ Z
h−→ ΣX is an exact triangle if and only if the diagram Y

g−→ Z
h−→

ΣX
−Σf−−−→ ΣX is an exact triangle.

(d) For any map f : X −→ Y there exists a spectrum Z and maps g, h such that X
f−→ Y

g−→ Y
h−→ ΣX is

an exact triangle.
(e) Suppose we have a diagram as shown below (with h missing), in which the rows lie are exact triangles

and the rectangles commute. Then there exists a (nonunique) map h making the whole diagram
commutative.

U //

f

��

V //

g

��

W //

h
��

ΣU

Σf

��
X // Y // Z // ΣX

(f) Suppose we have maps X
v−→ Y

u−→ Z, and exact triangles (X,Y, U), (X,Z, V ) and (Y,Z,W ) as
shown in the diagram. (A circled arrow U −→◦ X means a map U −→ ΣX.) Then there exist maps
r and s as shown, making (U, V,W ) into an exact triangle, such that the following commutativities
hold:

au = rd es = (Σv)b sa = f br = c
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The last axiom is called the octahedral axiom (the diagram can be turned into an octahedron by lifting the
outer vertices and drawing an extra line from W to U). In our case it basically just says that when we have
inclusions A ⊆ B ⊆ C of CW complexes we have (C/A)/(B/A) = C/B.

One of the most important consequences of the axioms is that whenever X −→ Y −→ Z −→ ΣX is an exact
triangle and W is a finite spectrum, we have long exact sequences

. . . −→ [W,Σ−1Z] −→ [W,X] −→ [W,Y ] −→ [W,Z] −→ [W,ΣX] −→ . . .

and
. . .←− [Σ−1Z,W ]←− [X,W ]←− [Y,W ]←− [Z,W ]←− [ΣX,W ]←− . . . .

2.5. Thom spectra. Let X be a finite CW complex, and let V be a vector bundle over X. The Thom space
XV can be defined as the one-point compactification of the total space of V . This has many interesting
properties, not least of which is the fact that when V is an oriented bundle of dimension n, the reduced

cohomology H̃∗(XV ) is a free module over H∗(X) on one generator in dimension n. This construction can
be generalised to virtual bundles, in other words formal expressions of the form V −W , except that we now
have a Thom spectrum XV−W rather than a Thom space. The construction is to choose a surjective map
from a trivial bundle Rn ×X onto W , with kernel U say, and define XV−W = Σ∞−nXV⊕U .

2.6. Duality. For any finite spectrum X, there is an essentially unique spectrum DX (called the Spanier-
Whitehead dual of X) equipped with a natural isomorphism [W ∧ X,Y ] = [W,DX ∧ Y ]. This can be
constructed in a number of different ways. One way is to start with a simplicial complex A and embed it
simplicially as a proper subcomplex of SN+1 for some N > 0. One can show that the complement of A
has a deformation retract B which is a finite simplicial complex, and DΣ∞+nA = Σ∞−n−NB. Note that
Alexander duality implies that HmX = H−mDX.

An important example arises when X = Σ∞M+ for some smooth manifold M , with tangent bundle τ say.
It is not hard to show geometrically that D(Σ∞M+) is M−τ , the Thom spectrum of the virtual bundle −τ
over M ; this phenomenon is called Atiyah duality.

We also write F (X,Y ) = DX ∧Y . This is a functor in both variables, it preserves cofibrations up to sign,
and the defining property of DX can be rewritten as [W,F (X,Y )] = [W ∧X,Y ].

2.7. Splittings. It often happens that we have a finite complex X that cannot be split into simpler pieces,
but that the finite spectrum Σ∞X does have a splitting. Group actions are one fruitful source of splittings. If

a finite group G acts on X, then the map G −→ Aut(Σ∞X) extends to a ring map Z[G] −→ End(Σ∞X). If H̃∗X
is a p-torsion group, then this will factor through (Z/pn)[G] for large n. Any idempotent element in (Z/p)[G]
can be lifted uniquely to an idempotent in (Z/pn)[G], which will give an idempotent in End(Σ∞X) and thus
a splitting of X. The methods of modular representation theory give good information about idempotents
in group rings, and thus a supply of interesting splittings. The Steinberg idempotent in (Z/p)[GLn(Z/p)]
gives particularly important examples, as do various idempotents in (Z/p)[Σn].

Another common situation is to have a finite complex X and a filtration F0X ⊆ F1X ⊆ . . . ⊆ FnX = X
that splits stably, giving an equivalence Σ∞X '

∨
n Σ∞FnX/Fn−1X of finite spectra. For example, one can

take X = U(m), and let FnX be the space of matrices A ∈ U(n) for which the rank of A− I is at most n. A
theorem of Miller says that the filtration splits stably, and that the quotient FnU(m)/Fn−1U(m) is the Thom
space of a certain bundle over the Grassmannian of n-planes in Cm. Later we will explain how to interpret
Σ∞X when X is an infinite complex; there are many examples in which X has a stably split filtration in
which the quotients are finite spectra. This holds for X = BU(n) or X = ΩU(n) or X = ΩnSn+m, for
example. The splitting of ΩnSn+m is due to Snaith; the Snaith summands in Ω2S3 are called Brown-Gitler
spectra, and they have interesting homological properties with many applications.
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3. Cobordism and Morava K-theory

We next outline the theory of complex cobordism, and the results of Hopkins, Devinatz and Smith showing
how complex cobordism reveals an important part of the structure of F .

Given a space X and an integer n ≥ 0 we define a geometric n-chain in X to be a compact smooth
manifold M (possibly with boundary) equipped with a continuous map f : M −→ X. We regard (M0, f0)
and (M1, f1) as equivalent if there is a differomorphism g : M0 −→ M1 with f1g = f0. We write GCnX
for the set of equivalence classes, which is a commutative semigroup under disjoint union. We define a
differential ∂ : GCnX −→ GCn−1X by ∂[M,f ] = [∂M, f |∂M ]. One can make sense of the homology MO∗X =
H(GC∗X, ∂), and (because ∂(M × I) = M qM) one finds that MO∗X is a vector space over Z/2. In the
case where X is a point, one can use cartesian products to make MO∗(point) into a graded ring, which
is completely described by a remarkable theorem of Thom: it is a polynomial algebra over Z/2 with one
generator xn in degree n for each integer n > 0 not of the form 2k − 1. New perspectives on this answer
and the underlying algebra were provided by Quillen [17, 18] and Mitchell [16]. One can also show that
MO∗X = MO∗(point)⊗Z/2 H∗(X;Z/2), so this construction does not yield new invariants of spaces. This
isomorphism gives an obvious way to define MO∗X when X is a finite spectrum.

The story changes however, if we work with oriented manifolds. This gives groups MSO∗X with a richer
structure; in particular, they are not annihilated by 2. There are various hints that complex manifolds would
give still more interesting invariants, but there are technical problems, not least the lack of a good theory of
complex manifolds with boundary. It turns out to be appropriate to generalize and consider manifolds with a
specified complex structure on the stable normal bundle, known as “stably complex manifolds”. The precise
definitions are delicate; details are explained in [17], and Buchstaber and Ray [2] have provided naturally
occuring examples where the details are important. In any case, one ends up with a ring MU∗ = MU∗(point),
and groups MU∗X for all spaces X that are modules over it. It is not the case that MU∗X = MU∗⊗ZH∗X,
but there is stll a suspension isomorphism, which allows one to define MU∗X when X is a finite spectrum.
One finds that this is a generalized homology theory (known as complex cobordism), so it converts cofibre
seqences of spectra to long exact sequences of modules. The nilpotence theory of Devinatz, Hopkins and
Smith [3, 12,21] (which will be outlined below) shows that MU∗X is an extremely powerful invariant of X.

The ring MU∗ turns out to be a polynomial algebra over Z with one generator in each positive even
degree. There is no canonical system of generators, but nonetheless, Quillen showed that MU∗ is canonically
isomorphic to an algebraically defined object: Lazard’s classifying ring for formal group laws [1, 20]. This
was the start of an extensive relationship between stable homotopy and formal group theory. The algebra
provides many natural examples of graded rings A∗ equipped with a formal group law and thus a map
MU∗ −→ A∗. It is natural to ask whether there is a generalised homology theory A∗(X) whose value on
a point is the ring A∗. Satisfactory answers for a broad class of rings A∗ are given in [25], which surveys
and consolidates a great deal of much older literature and extends newer ideas from [5]. In particular, we
can consider the rings K(p, n)∗ = Fp[vn, v−1

n ], where p is prime and n > 0 and vn has degree 2(pn − 1).
This is made into an algebra over MU∗ using a well-known formal group law, and by old or new methods,
one can construct an associated generalised homology theory K(p, n)∗X, known as Morava K-theory. It is
convenient to extend the definition by putting K(p, 0)∗X = H∗(X;Q).

A key theorem of Hopkins, Devinatz and Smith says that if f : ΣdX −→ X is a self-map of a finite spectrum
X, and K(p, n)∗(f) = 0 for all primes p and all n ≥ 0, then the iterated composite fm : ΣmdX −→ X is zero
for large m, or in other words f is composition-nilpotent. They also show that Morava K-theory detects
nilpotence in a number of other senses, and give formulations involving the single theory MU instead of the
collection of theories K(p, n).

If R is a commutative ring, it is well-known that the ideal of nilpotent elements is the intersection of
all the prime ideals, so the Zariski spectrum is unchanged if we take the quotient by this ideal. One can
deduce that the classification of certain types of subcategories of the abelian category of R-modules is again
insensitive to the ideal of nilpotents. Our category F of finite spectra is triangulated rather than abelian,
but nonetheless Hopkins and Smith developed an analogous theory and deduced a classification of the thick
subcategories of F , with many important consequences.

5



4. Boardman’s category B

It is clearly desirable to have a category C analogous to F but without finiteness conditions. There are
various obvious candidates: one could take the Ind-completion of F , or just follow the definition of F but allow
infinite CW complexes instead of finite ones. Unfortunately, these categories turn out to have unsatisfactory
technical properties. The requirements were first assembled in axiomatic form by Margolis [15]; in outline,
they are as follows:

• C should be a triangulated category
• Every family {Xα} of objects in C should have a coproduct, written

∨
αXα

• For any X,Y ∈ C there should be functorially associated objects X ∧ Y and F (X,Y ) making C a
closed symmetric monoidal category.

• If we let small(C) be the subcategory of objects W for which the natural map
⊕

α[W,Xα] −→
[W,

∨
αXα] is always an isomorphism, then small(C) should be equivalent to F .

Historically, the work of Margolis came after Boardman’s construction of a category B satisfying the axioms,
and Adams’s explanation [1] of a slightly different way to approach the construction. Margolis conjectured
that if C satisfies the axioms then C is equivalent to B. Schwede and Shipley [22] have proved that this is
true, provided that C is the homotopy category of a closed model category in the sense of Quillen [4, 19]
satisfying suitable axioms. There is also good evidence for the conjecture without this additional assumption.
The objects of B are generally called spectra, although in some contexts one introduces different words to
distinguish between objects in different underlying geometric categories.

Probably the best approach to constructing B is via the theory of orthogonal spectra, as we now describe.
Let V denote the category of finite-dimensional vector spaces over R equipped with an inner product. The
morphisms are linear isomorphisms that preserve inner products. For any V ∈ V (with dim(V ) = n say) we
write SV for the one-point compactification of V ; this is homeomorphic to Sn. An orthogonal spectrum X
consists of a functor V → {based spaces} together with maps SU ∧ X(V ) → X(U ⊕ V ) satisfying various
continuity and compatibility conditions that we will not spell out. We write S for the category of orthogonal
spectra.

For orthogonal spectra X and Y , the morphism set S(X,Y ) has a natural topology, and we could define an
associated homotopy category by the rule [X,Y ] = π0S(X,Y ). Unfortunately, the resulting category is not
the one that we want. Instead, we define the homotopy groups of X by the rule πk(X) = lim

−→N
πk+N (X(RN )).

We then say that a map f : X → Y is a weak equivalence if π∗(f) : π∗(X)→ π∗(Y ) is an isomorphism. We now
construct a new category Ho(S) by starting with S and adjoining formal inverses for all weak equivalences.
It can be shown that this is equivalent to B (or can be taken as the definition of B).

This process of adjoining formal inverses can be subtle. To manage the subtleties, we need the theory of
model categories in the sense of Quillen [4, 10]. In particular, this will show that Ho(S)(X,Y ) = π0S(X,Y )
for certain classes of spectra X and Y ; this is enough to get started with computations and prove that
Margolis’s axioms are satisfied.

Given orthogonal spectraX, Y and Z, a pairing fromX and Y to Z consists of maps αU,V : X(U)∧Y (V )→
Z(U ⊕ V ) satisfying some obvious compatibility conditions. One can show that there is an orthogonal
spectrum X ∧ Y such that pairings from X and Y to Z biject with morphisms from X ∧ Y to Z. This
construction gives a symmetric monoidal structure on S. This in turn gives rise to a symmetric monoidal
structure on Ho(S); however, there are some hidden subtleties in this step, which again are best handled by
the general theory of model categories. One consequence is that the topology of the classifying space of the
symmetric group Σk is mixed in to the structure of the k-fold smash product X(k) = X ∧ · · · ∧X.

A ring spectrum is an object R ∈ Ho(S) equipped with a unit map η : S0 → R and a multiplication map
µ : R ∧R→ R such that the following diagrams in Ho(S) commute:

R ∧R ∧R
µ∧1 //

1∧µ
��

R ∧R
µ

��

R
η∧1 //

1
""F

FF
FF

FF
FF

R ∧R
µ

��

R
1∧ηoo

1
||xx
xx
xx
xx
x

R ∧R
µ

// R R
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Because we now have a good underlying geometric category S, we can formulate a more precise notion: a

strict ring spectrum is an object R ∈ S equipped with morphisms S0 η−→ R
µ←− R ∧ R such that the above

diagrams commute in S (not just in Ho(S)).
The symmetric monoidal structure on S includes a natural map τXY : X ∧ Y → Y ∧X. We say that a

strict ring spectrum R is strictly commutative if µ ◦ τRR = µ. This is a surprisingly stringent condition, with
extensive computational consequences.

5. Examples of spectra

Some important functors that construct objects of B are as follows:

(a) For any based space X there is a suspension spectrum Σ∞X ∈ B, whose homotopy groups are
given by πnΣ∞X = πSnX = lim

−→k
πn+kΣkX. The relevant orthogonal spectrum is just (Σ∞X)(V ) =

SV ∧X.
We will mention one important example of infinite complexes X and Y for which [Σ∞X,Σ∞Y ]

is well-understood. Let G be a finite group, with classifying space BG. Let AG+ be the set of
isomorphism classes of finite sets with a G-action. We can define addition and multiplication on
AG+ by [X] + [Y ] = [X q Y ] and [X][Y ] = [X × Y ]. There are no additive inverses, but we can
formally adjoin them to get a ring called AG, the Burnside ring of G; this is not hard to work with
explicitly. There is a ring map ε : AG −→ Z defined by ε([X]− [Y ]) = |X|− |Y |, with kernel I say. We

then have a completed ring ÂG = lim
←−n

AG/In. The Segal conjecture (which was proved by Carlsson)

gives an isomorphism ÂG ' [Σ∞BG+,Σ
∞S0]. One can deduce a description of [Σ∞BG+,Σ

∞BH+]
in similar terms for any finite group H.

(b) For any virtual vector bundle V over any space X, there is a Thom spectrum XV ∈ B. In particular,
if V is the tautological virtual bundle (of virtual dimension zero) over the classifying space BU ,
then there is an associated Thom spectrum, normally denoted by MU . This has the property that
the groups MU∗X (as in Section 3) are given by π∗(MU ∧ Σ∞X+) (this is proved by a geometric
argument, and is essentially the first step in the calculation of MU∗). One can construct MU (and
also MO and MSO) as strictly commutative ring spectra.

Bott periodicity gives an equivalence BU ' ΩSU , and the filtration of ΩSU by the subspaces
ΩSU(k) gives a filtration of MU by subspectra X(m), which are important in the proof of the
Hopkins-Devinatz-Smith nilpotence theorem. There are models of these homotopy types that are
strict ring spectra, but they cannot be made commutative.

(c) For any generalized cohomology theory A∗, there is an essentially unique spectrum A ∈ B with
AnX = [Σ∞X+,Σ

nA] for all spaces X and n ∈ Z. Similarly, for any generalized homology theory
B∗, there is an essentially unique spectrum B ∈ B with BnX = πn(B ∧ Σ∞X+) for all spaces X
and n ∈ Z. These facts are known as Brown representability ; the word “essentially” hides some
subtleties.

(d) In particular, for any abelian group A there is an Eilenberg-MacLane spectrum HA ∈ B such that
[Σ∞X+,Σ

nHA] = Hn(X;A) and πn(HA ∧ Σ∞X+) = Hn(X;A). If A is a commutative ring, then
HA is a strictly commutative ring spectrum. It is common to consider the case A = Z/2. Here it
can be shown that

π∗((HZ/2) ∧ (HZ/2)) = Z/2[ξ1, ξ2, ξ3, . . . ],

with |ξk| = 2k − 1. This is known as the dual Steenrod algebra, and denoted by A∗. The dual group
Ak = Hom(Ak,Z/2) can be identified with [HZ/2,ΣkHZ/2], so these groups again form a graded
ring, called the Steenrod algebra. This ring is noncommutative, but its structure can be described
quite explicitly. It is important, because the mod 2 cohomology of any space (or spectrum) has a
natural structure as an A∗-module. There is a similar story for mod p cohomology when p is an odd
prime, but the details are a little more complicated.

(e) Another consequence of Brown representability is that there is a spectrum I ∈ B such that [X, I] '
Hom(π0X,Q/Z) for all X ∈ B. This is called the Brown-Comenetz dual of S0; it is geometrically
mysterious, and a fertile source of counterexamples.
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(f) If M∗ is a flat module over MU∗, then the functor X 7→ M∗ ⊗MU∗ MU∗X is a homology theory,
so there is a representing spectrum M with π∗(M ∧X) = M∗ ⊗MU∗ MU∗X. The Landweber exact
functor theorem shows that flatness is not actually necessary: a weaker condition called Landweber
exactness will suffice. This condition is formulated in terms of formal group theory, and is often easy
to check in practice.

Often M∗ is a ring, and the MU∗-module structure arises from a ring map MU∗ → M∗, which
corresponds (by Quillen’s description of MU∗) to a formal group law over M∗.

Important examples include the Johnson-Wilson spectra E(p, n), with E(p, n)∗ = Z(p)[v1, . . . , vn][v−1
n ]

(where |vk| = 2(pk − 1)). This has a canonical formal group law, which we will not describe here.
The ring K(p, n)∗ = Z/p[vn, v−1

n ] is naturally a quotient E(p, n)∗/In, where In = (p, v1, . . . , vn−1).
It it is not Landweber exact, but a corresponding spectrum K(p, n) can be constructed by other

means. It is also useful to consider the completed spectra Ê(p, n) with

π∗(Ê(p, n)) = (E(p, n)∗)
∧
In = Zp[[v1, . . . , vn−1]][v±1

n ].

This is again Landweber exact.
When M∗ is a ring, one might hope to find a model of this homotopy type that is actually a

strict ring spectrum, preferably strictly commutative. Unfortunately, this does not work very well.
Often there will be uncountably many different ways to make M into a strict ring spectrum, with
no way to pick out a preferred choice. Moreover, there will often not be any choice that is strictly
commutative. However, by a theorem of Hopkins and Miller, there is an essentially unique strictly

commutative model for Ê(p, n). The reason why this case is special involves quite deep aspects of
the algebraic theory of formal groups.

(g) For any small symmetric monoidal category category A, there is a K-theory spectrum K(A) ∈
B. Computationally, this is very mysterious, apart from the fact that it is always connective (ie
πnK(A) = 0 for n < 0) and π0K(A) is the group completion of the monoid of connected components
in A. Thomason has shown [23] that for every connective spectrum X there exists A with K(A) ' X.

– If A is the category of finite sets and isomorphisms, then K(A) = Σ∞S0.
– Let G be a finite group, and let A be the category of finite G-sets and isomorphisms. Let Af

(resp At) be the subcategory of free (resp. transitive) G-sets. Then K(A) = Σ∞B(At)+, which
can also be described as the wedge over the conjugacy classes of subgroups H ≤ G of the spectra
Σ∞BWGH+, or as the fixed point spectrum of the G-equivariant sphere spectrum in the sense
of Lewis-May-Steinberger [14]. On the other hand, K(Af ) = Σ∞BG+.

– Work of Kathryn Lesh can be interpreted as exhibiting symmetric monoidal categoriesMn (of
“finite multisets with multiplicities at most n”) whose K-theory is the n’th symmetric power of
Σ∞S0.

– If A is the symmetric monoidal category with object set N and only identity morphisms, then
K(A) = HZ.

– One can set up a category A, whose objects are smooth compact closed 1-manifolds, and
whose morphisms are cobordisms between them. With the right choice of details, the K-theory
spectrum K(A) is then closely related to the classifying space of the stable mapping class group,
and an important theorem of Madsen and Weiss can be interpreted as saying that K(A) is the
Thom spectrum of the negative of the tautological bundle over CP∞, up to adjustment of π−2.

– If R is a commutative ring and A is the category of finitely generated projective R-modules,
then K(A) is the algebraic K-theory spectrum usually denoted by K(R). Even in the case
R = Z, this contains a great deal of arithmetic information. By rather different methods
one can construct spectra called THH(R) and TC(R) (topological Hochschild homology and
topological cyclic homology) that approximate K(R); there is an extensive literature on these
approximations. The definitions can be set up in such a way that the spectra K(R), THH(R)
and TC(R) are all strictly commutative ring spectra.

(h) The above construction can be modified slightly to take account of a topology on the morphism sets of
A. We can then feed in the category of finite-dimensional complex vector spaces and isomorphisms (or
a skeleton thereof) to get a spectrum known as kU , the connective complex K-theory spectrum, with
a homotopy element u ∈ π2kU such that π∗kU = Z[u]. This has the property that for finite complexes
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X, the group kU0X = [Σ∞X+, kU ] is the group completion of the monoid of isomorphism classes
of complex vector bundles on X, or in other words the K-theory of X as defined by Grothendieck.
By a colimit construction, one can build a periodized version called KU with π∗KU = Z[u, u−1].
There are direct constructions of kU and KU using Bott periodicity rather than symmetric monoidal
categories. There are also constructions with a more analytic flavour, based on spaces of Fredholm
operators and so on. Both kU and KU are strictly commutative ring spectra.

The infinite complex projective space CP∞ is well-known to be a commutative group up to
homotopy. Using this, one can make the spectrum R = Σ∞(CP∞)+ into a ring spectrum. The
standard identification CP 1 = S2 gives rise to an element v ∈ π2(R), and we can use a homotopy
colimit construction to invert this element, giving a new ring spectrum R[v−1]. It is a theorem of
Snaith that R[v−1] is homotopy equivalent to KU .

(i) Let F be a functor from based spaces to based spaces. Under mild conditions, we can use the
homeomorphism S1 ∧ Sn −→ Sn+1 to get a map

S1 −→ Map(Sn, Sn+1)
F−→ Map(FSn, FSn+1),

and thus an adjoint map ΣFSn −→ FSn+1. This gives a sequence of spectra Σ−nΣ∞FSn, whose
homotopy colimit (in a suitable sense) is denoted by D1F . This is called the linearization or first
Goodwillie derivative of F . Goodwillie [7–9] has set up a “calculus of functors” in which the higher
derivatives are spectra DnF with an action of Σn. (The slogan is that where the ordinary calculus
of functions has a denominator of n!, the calculus of functors will take coinvariants under an action
of Σn.) Even the derivatives of the identity functor are interesting; they fit in an intricate web of
relationships with partition complexes, symmetric powers of the sphere spectrum, Steinberg modules
and so on. There are other versions of calculus for functors from other categories to spaces, with
applications to embeddings of manifolds, for example.

(j) A Moore spectrum is a spectrum X for which πn(X) = 0 when n < 0 and Hn(X) = 0 when n > 0.
Let H be the category of Moore spectra. The functor H0 : H → Ab is then close to being an
equivalence: for any X,Y ∈ H there is a natural short exact sequence

Ext(H0(X), H0(Y ))/2 −→ [X,Y ] −→ Hom(π0(X), π0(Y )).

Moreover, given any abelian group A there is a Moore spectrum SA (unique up to non-canoncal
isomorphism) with H0(SA) ' A.

(k) Let C be an elliptic curve over a ring k. (Number theorists are often interested in the case where k
is a small ring like Z, but it is also useful to consider larger rings like Z[ 1

6 , c4, c6][(c26 − c34)−1] that
have various universal properties in the theory of elliptic curves.) From this we obtain a formal

group Ĉ, which can be thought of as the part of C infinitesimally close to zero. It often happens

that there is a spectrum E that corresponds to Ĉ under the standard dictionary relating formal
groups to cohomology theories. Spectra arising in this way are called elliptic spectra. The details
are usually adjusted so that π∗(E) = k[u, u−1] with k = π0(E) and u ∈ π2(E). In many cases E can
be constructed using the Landweber Exact Functor Theorem, as in (f).

The spectrum TMF (standing for topological modular forms) “wants to be” the universal example
of an elliptic spectrum. It is not in fact an elliptic spectrum, but it is close to being one, and it
admits a canonical map to every elliptic spectrum. If we let MF∗ denote the group of integral
modular forms as defined by number theorists (graded so that forms of weight k appear in degree
2k) then we have

π∗(TMF )[ 1
6 ] = Z[ 1

6 , c4, c6][(c26 − c34)−1] = MF∗[
1
6 ].

The significance of the number 6 here is that 2 and 3 are the only primes that can divide |Aut(C)|,
for any elliptic curve C. If we do not invert 6 then the homotopy groups π∗(TMF ) are completely
known, but different from MF∗ and to complex to describe here.

There is a dense network of partially understood interactions between elliptic spectra, conformal
field theories, vertex operator algebras, chiral differential operators and mathematical models of
string theory. It seems likely that some central aspects of this picture remain to be discovered.
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Under (g) we discussed the algebraic K-theory spectrum K(R) associated to to a commutative
ring R. The construction can be generalised to define K(R) when R is a commutative ring spectrum;
in particular, we can define K(kU). Rognes and Ausoni have found evidence of a relationship between
K(kU) and TMF , but many features of this remain obscure.

(l) Let R be a strictly commutative ring spectrum, so for any space X we have a ring R0(X) =
[Σ∞X+, R], and a group of units R0(X)×. It can be shown that there is a spectrum gl1(R) such
that R0(X)× = [Σ∞X+, gl1(R)] for all X. By taking X = Sn we see that πn(gl1(R)) = πn(R) for
n > 0, but H∗(gl1(R)) is not closely related to H∗(R), and many aspects of the topology of gl1(R)
are mysterious, even in the case R = S0.

(m) The notion of Bousfield localisation provides an important way to construct new spectra from old.
The simplest kinds of Bousfield localisations are the arithmetic ones: if X is a spectrum and p

is a prime number then there are spectra and maps X[ 1
p ]

i←− X
j−→ X(p) such that i induces an

isomorphism

π∗(X)[
1

p
] = π∗(X)⊗ Z[

1

p
]→ π∗(X[

1

p
])

and j induces an isomorphism

π∗(X)(p) = π∗(X)⊗ Z(p) → π∗(X(p)).

Similarly, there is a map X → XQ inducing π∗(X) ⊗ Q ' π∗(XQ). These properties characterise
X[ 1

p ], X(p) and XQ up to canonical homotopy equivalence. Along similar lines, there is a p-adic

completion map X → X∧p . If each homotopy group πk(X) is finitely generated, then we just have
πk(X∧p ) = πk(X)∧p = πk(X) ⊗ Zp. In the infinitely generated case the picture is more complicated,
but still well-understood.

Next, for any spectrum E there is a functor LE : B → B and a natural map i : X → LEX
characterised as follows: the induced map E∗i : E∗X → E∗LEX is an isomorphism, and if f : X → Y
is such that E∗f is an isomorphism, then there is a unique map g : Y → LEX with gf = i. The
spectrum LEX is called the Bousfield localisation of X with respect to E, and we say that X is
E-local if the map X → LEX is a homotopy equivalence. The slogan is that the category BE
of E-local spectra is the part of stable homotopy theory that is visible to E. Apart from the
arithmetic completions and localisations, the most important cases are the chromatic localisations
LE(p,n) and LK(p,n), which have been studied intensively [24], building on the Nilpotence Theorem
and its consequences.

(n) The theory of surgery aims to understand compact smooth manifolds by cutting them into simpler
pieces and reassembling the pieces. A key ingredient is as follows: if we have an n-dimensional
manifold with an embedded copy of Si−1×Bj (where i+ j = n+1), then we can remove the interior
to leave a manifold with boundary Si−1 × Sj−1, then glue on a copy of Bi × Sj−1 to obtain a new
closed manifold M ′. If the original copy of Si−1 ×Bj is chosen appropriately, then the cohomology
of M ′ will be smaller than that of M . By iterating this process, we hope to convert M to Sn. There
are various obstructions to completing this process (and similar processes for related problems),
and it turns out that these can be encoded as problems in stable homotopy theory. Cobordism
spectra such as MSO play a role, as do the spectra kO and gl1(S0). When the dimension n is
even and M is oriented, the multiplication map Hn/2(M) ⊗ Hn/2(M) −→ Hn(M) = Z gives a
bilinear form on Hn/2(M), which is symmetric or antisymmetric depending on the parity of n/2.
Because of this, it turns out that we need to consider a kind of K-theory of abelian groups equipped
with a bilinear form. This is known as L-theory. There are various different versions, depending
on details that we have skipped over. One of them gives a strictly commutative ring spectrum L
with π∗(L) = Z[x, y]/(2x, x2), where |x| = 2 and |y| = 4 (so for k ≥ 0 we have π4k(L) = Z.yk
and π4k+2(L) = (Z/2).ykx). There is a canonical map σ : MSO → L of strictly commutative ring
spectra. For an oriented manifold M of dimension 4k, the cobordism class [M ] gives an element of
π4k(MSO), so we must have σ∗([M ]) = d.yk for some integer d. This integer is just the signature of
the symmetric bilinear form on H2k(M ;R).
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