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It is well known that any continuous tangent vector field on the sphere
S2 must, at some location, be zero. This result is known as the Hairy Ball
Theorem for it can be loosely interpreted as follows:

It is impossible to comb all the hairs of a fuzzy ball so that: i) each hair
lies tangent to the surface of the ball, and ii) the angles of the hairs vary
continuously over the surface of the ball. (By this we mean that the angle
between two hairs at positions p and q say can be made arbitrarily small by
choosing q sufficiently close to p.) Any attempt to accomplish this feat must
produce a cowlick.

We are assuming that every point of the ball’s surface sprouts a hair. It
is a surprise to learn that this topological result, like Brouwer’s famous fixed
point theorem [2, pp: 21 - 24], also follows from an application of Sperner’s
lemma.

1. SPERNER’S LEMMA. In 1928 Emanuel Sperner presented a simple,
yet surprisingly powerful, combinatorial lemma about triangles [5]. We work
with a slight generalization of his original result:

Lemma 1: If the boundary vertices of an arbitrary triangulated polygon are
labeled either “A,” “B” or “C,” in such a way that all the A-B edges that ap-
pear have the same orientation, then any attempt to label the interior vertices,
again either “A,” “B” or “C,” necessarily produces at least n subtriangles
fully labeled A-B-C. Here n is the number of exterior A-B edges initially
scribed.

The following constructive proof is due to Cohen [1] and Kuhn [3].
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Figure 1: Paths must all end inside the palace

Proof: Imagine the triangulated polygon is the floor-plan of a palace with
triangular rooms and with all the A-B edges, both inside the polygon and
along its boundary, the doorways. All other edges are walls. There are n
doors through which you can enter the palace from the outside. If you do so,
and follow the passageway of rooms and doors as far as possible, your path
must either terminate within the palace, or lead you back outside through
an A-B door. The latter case is impossible, as all paths through doorways
maintain the orientation of label “A” to one particular side and label “B” to
the other. As one cannot enter the same room twice (no room contains three
A-B doors) the n passageways must terminate in n distinct rooms. These
final rooms are A-B-C triangles!�

If one does not orient the outside A-B edges appropriately one may enter
an exterior door of one orientation and later exit the palace through a door
of the opposite orientation. But if there is an excess of exterior doors of a
particular orientation, then we can still be assured of the existence of fully
labeled triangular rooms. As a generalization of Lemma 1 we therefore have:

Lemma 2: Any labeling scheme of the vertices of a triangulated polygon,
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using the labels “A,” “B” or “C,” necessarily contains at least d fully labeled
A-B-C subtriangles, where d is the difference in the number of exterior A-B
edges of each orientation.

Of course, our choice to focus on “A-B” doors is arbitrary.

2. THE HAIRY BALL THEOREM. We now use Lemma 2 to prove
the Hairy Ball Theorem. We begin by assuming that a continuous non-zero
tangent vector field on S2 does exist, and use this supposed vector field to
produce a labeling of a triangulated polygon.

By the continuity assumption there exists an open disc P on S2 about the
north pole N within which all hairs essentially point in the same direction.
That is, given a prescribed value ε, any two tangent vectors selected from P
have angle at most ε between them. For simplicity, we’ll work with the value
ε equals one degree.

Imagine the following diagram of circles drawn on the surface of the ball.
These circles are mutually tangent at N and we orient them to produce a
diagram that looks like the magnetic field of a dipole. One of the circles is a
great circle and divides the sphere into two hemispheres.

NFIGURE 2

Figure 2: Circles on the sphere
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Let p be a point on the sphere different from N . Then p lies on a unique
oriented circle in our diagram. Let θ(p) be the angle measured in degrees
counterclockwise from the direction of the hair at p to the direction of the
unit tangent vector to the circle at p. Label this point “A” if θ(p) lies in
the interval [0, 120), “B” if θ(p) ∈ [120, 240), and “C” otherwise. In this way,
every point on the surface of the ball, except the north pole, is given a unique
label “A,” “B” or “C.”

Now consider the boundary ∂P of the disc P . We see that the angle θ
described above undergoes two full turns if we traverse ∂P once. By conti-
nuity, it is possible to find points pA, pB and pC along ∂P , and all within one
hemisphere, and points qA, qB and qC , on ∂P , in the opposite hemisphere,
with θ(pA) = θ(qA) = 60o, θ(pB) = θ(qB) = 180o and θ(pC) = θ(qC) = 300o.
And again, by continuity and the fact that we have chosen ε = 1o, we can be
sure that all the points along the boundary between pB and pC have labels
either “B” or “C” only, all points between pC and qA have labels “C” and
“A” only, and so on. See Figure 3.

Now triangulate S2 − P , the region of the sphere outside the open disc,
in any manner you care to choose, using a large number of points along the
boundary of P for vertices, but including the specific points pA,pB, pC , qA, qB

and qC . Given that an odd number of label changes must occur when travers-
ing ∂P from pA to pB, we deduce that there must be an odd number of A-B
edges along this particular arc of ∂P Thus there is an excess of one “exte-
rior” A-B edge of a particular orientation. Another of the same orientation
occurs on ∂P between qA and qB. Thus in any triangulation of S2−P , there
exist at least two fully-labeled A-B-C triangles.

Take finer and finer triangulations of S2 −P , the n-th triangulation con-
sisting of triangles with diameter no larger than 1/n. For each of these tri-

angulations there exist three points x
(n)
A , x

(n)
B and x

(n)
C representing the three

vertices of some fully-labeled subtriangle. As the sphere is compact, a sub-
sequence of {x(n)

A } converges to a point x∗. Moreover, this point lies outside
the open disc P .

This point x∗ is the limit of points on the sphere, each labeled “A” and
each part of a fully labeled subtriangle. It follows that x∗ is also the limit of a
sequence of points labeled “B” and a sequence of points all labeled “C.” Now
ask: What angle does the hair at p∗ make with the unit tangent to the circle
through x∗? By continuity, this angle must simultaneously be in the (closed)
intervals [0, 120], [120, 240] and [240, 360], which, of course, is impossible.
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ABCpCAqB   ppqqFIGURE 3: In this diagram all hairs (essentially) point ot the right.

Figure 3: In this diagram all hairs (essentially) point to the right

This contradiction proves that no continuous non-zero tangent vector field
can exist.

Comment: The authors would like to thank the referee for alerting them to
Yuri Shashkin’s treatment in [4] of additional applications of Sperner’s lemma
and his proof of the Hairy Ball Theorem using the idea of the degree of a
map, the Fixed/Antipodal Point Theorem for a sphere, and basic homotopy
theory.
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