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1 Pep talk

This thesis is meant to fill a gap in the literature, for those starting out
on their first larger calculations (ones which are too large for normal pa-
per), and to emphasize some crucial differential finding tricks often left
unpublished, or abandoned shivering in a footnote or side comment. This
exposition will be repetitive, there will often be multiple proofs of the same
things – the aim is to teach methods used by active topologists by showing
them in action.

We introduce the May spectral sequence via two examples of its applica-
tion, toward understanding ExtA(n)(F2,F2), a crucial figure in computing
the stable homotopy groups of spheres. We do the examples of A(1) and
A(2), the latter only in a range.
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Further, we hope to illuminate the philosophy behind the May spectral
sequence, and show the fun of presenting elements in the May spectral
sequence as Massey products.

The May spectral sequence is the systematic destruction of regularity.
We find any relations, propagate them, and remove them from the picture.
We will be like Michelangelo: starting from the very regular block of marble,
and chipping away carefully until our beast emerges. All that can support
a differential will support a differential.

It is crucial to emphasize that the calculations we exposite are not dif-
ficult, they are only complicated.

This thesis will assume that the reader is familiar with the basics of
spectral sequences, and Massey products. For a discussion of the defini-
tion of Massey products and their indeterminancy, the author recommends
O’Neill [4].

2 Set up of the Exercise

The May spectral sequence converges to the E2 page of the Adams spectral
sequence, so let’s talk about the Adams spectral sequence. We work with
mod-2 coefficients. The standard Adams spectral sequence says:

Ext∗,∗A∗
(H∗(X), H∗(Y )) =⇒ [X,Y ]∧2

Where here Ext means comodule Ext. We plug in X = S0 and Y = M ,
where M is some spectrum, to get:

Ext∗,∗A∗
(H∗(S0), H∗(M)) =⇒ π∗(M)∧2

Note that H∗(S0) ' F2. We plug in ko for M and use the isomorphism
(which we prove in section 7) H∗(ko) ' A//A(1).

Ext∗,∗A∗
(F2, A//A(1)) =⇒ π∗(ko)

∧
2

Using the change of rings theorem, we slip in:

Ext∗,∗A(1)∗
(F2,F2) =⇒ π∗(ko)

∧
2

3 Why use the May Spectral Sequence?

The calculation of the homotopy ring of connective KO using the Adams or
May spectral sequence begins with the homotopy groups of ko, and reveals
the ring structure and Toda bracket presentations of the generators.
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Note that we need that

H∗(ko) ' A//A(1)

where A(1) is the submodule of the Steenrod algebra generated by Sq1, Sq2,
and A//A(1) represents the Hopf-algebra quotient A⊗A(1) F2.

The only way to prove this isomorphism is by using the cofibration

Σko
η∧ko−−−→ ko

c−→ ku
∂−→ Σ2ko, which requires you to know the homo-

topy groups of ko. There is no way around it! Nevertheless, calculat-
ing ExtA(1)(F2,F2) is a good exercise, because it immediately collapses to
π∗(ko).

There are two ways we can go about calculating ExtA(1)∗(F2,F2). First,
we could try to take an A(1)∗ resolution of F2, and then use this resolution
to write down the Adams spectral sequence E2 page. This is very doable,
we find a periodicity in the resolution very quickly, it appears as the cell
structure of RPn with a Joker on the end (this may be seen in Bob Bruner’s
artwork on resolutions of A(1) [3]. The disadvantage of this hands on
approach is the lack of ability to generalize. If we want to compute π∗(tmf),
for which a key ingredient is HF∗2(tmf) = A//A(2), resolution with copies
of A(2) by hand is practically impossible and at the very least hellish.

We often like to break up complex computations into bite sized pieces.
Instead of calculating an A(2) resolution of F2 to get directly to the Adams
spectral sequence, we can use the May spectral sequence.

The May spectral sequence is an entirely algebraic method of calcula-
tion, even the differentials are completely algebraic.

E∗,∗,∗1 = F2[hij |i ≥ 1, j ≥ 0]⇒ Ext∗,∗A (F2,F2)

Here we care only about A(1), so our E1 page will mercifully be a
subalgebra of F2[hij |i ≥ 1, j ≥ 0].

Truly, we use this paper as a “first hit,” an exposure to ideas that will
allow the reader to calculate π∗(tmf)∧2 . We will start with the May spectral
sequence to stem 13, and then compute the only Adams differential in this
range.

4 Calculation of ExtA(1)(F2,F2) using May Spec-
tral Sequence

We begin given that the E1 page of the May spectral sequence is:

E∗,∗,∗1 = F2[h10, h11, h20]
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where hij corresponds to ξ2j

i in the cobar complex, and the degree in (t−
s, s, u) coordinates is |hij | = (2j(2i−1)−1, 1, 1). We are further given that
the only d1 differential is:

d1(h20) = h10h11

As short hand, we write hin =: hn. We propagate the E1 page, and
draw in the d1’s. We see immediately that our d1 differential has both h0

and h1 ladders. The E1 page is a bit awful to behold in its full glory without
witnessing it being drawn in real time, so we do not picture it here. After
propagating the differential, we flip to the E2 page:

Let’s look for d2’s. We needn’t look long. The only one which could
possibly exist is on the only remaining generator of May degree 2, h2

20.

Theorem 1. We have a Massey product presentation of h2
20 =: b20.

h2
20 = 〈h10, h11, h10, h11〉

Proof.

We see 0 on the bottom row because h10h20 + h10h20 = 0 mod 2, and
h11h20 + h11h20 = 0 mod 2 as well. So, 0 kills them both! Yippee!

Theorem 2. d2(h2
20) = h3

1 + h2
0h2
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Proof. We may take the higher differential of h2
20 by treating it as a 4-fold

Massey product. This is May’s original proof although he did not include
it in his thesis.

One of the main tricks we will use to calculate differentials is using the
higher Leibnitz formula. Let’s talk about the 3-fold version first.

d?(〈a1, a2, a3〉) = a1c+ ba3

where a1a2 = b and a2a3 = c.
We are ready for the 4-fold version:

d?(〈a, b, c, d〉) = x · d+ y · a

where 〈a, b, c〉 is detected by x ∈ the Er page of the May SS, and 〈b, c, d〉 is
detected by y ∈ the Er page of the May SS.

In our case, the 3-fold Massey products that appear on the Adams
spectral sequence obey the rule 〈hi, x, hi〉 = hi+1x:

〈h0, h1, h0〉 = h2
1

〈h1, h0, h1〉 = h0h2

And thus, d(〈h10, h11, h10, h11〉) = h3
1 + h2

0h2, note that they are in the
same degree.

Remark. We use the derivation of this differential as a discussion of the
3 different ways to shed light on differentials: the higher Liebnitz rule, the
cobar complex, and Nakamura’s lemma. They are parts of a whole. The
first way is the most intuitive: we use the Massey product decomposition
of an element, this is garunteed to work because there is a Massey product
presentation of any element on the May spectral sequence.

May understood the determination of what the differential of a Massey
product should be, and his proof of this higher Leibnitz rule uses hypothesis:
the vanishing of the elements that could obstruct the proof (the condition
is given in Theorem 4.5 pg. 565) as Corollary 4.6 [?]. Yet, it works far more
generally.

After he had the hueristic for what we know the differential must be,
May skirted the technicality in the general theory of differentials of Massey
products by embedding in the bar construction. This makes the differential
Massey product method perfectly rigorous.

The third way is to use Nakamura’s lemma, which is of the form

Sqi+1(dr(a)) = d2r(Sq
i(a))
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(page 301, Prop 4.3 [5]). These three methods reinforce each other.
There is an indeterminacy subtlety in Nakamura’s lemma, but since we

have 3 weights in the May spectral sequence, the indeterminacy is negligible.

We include an alternative proof of d2(h2
20) = h3

1+h2
0h2 using Nakamura’s

lemma.

Proof.

d2(Sq0(h20) = Sq1(d1(h20))

= Sq1(h0h1)

= Sq1(h0)Sq0(h1) + Sq0(h0)Sq1(h1)

= h1h
2
1 + h2

0h2

This uses that Sq0(hij) = h2
ij , and Sq1(hij) = hi,j+1 (page 7, [2]).

So, we have proven this differential:

and using the h11 ladder, we propagate the differential.

Flipping to page 3, we see that there cannot be any more differentials,
so the spectral sequence collapses on the 3rd page:
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Since the E∞ page of the May SS is the E2 page of the Adams SS up to
hidden extensions, we check for hidden extensions. This is a highly merciful
task because there are no dots in higher filtrations! Therefore, there cannot
possibly be hidden extensions.

Now that we have the Adams E2 page, we look to see if there are any
Adams differentials, for grading reasons we see that there are none, so the
Adams SS collapses on the 2nd page. So, reading off the resultant homotopy
groups:

Z, C2, C2, 0,Z, 0, 0, 0,Z
We are thinking of 2 := h0, η := h1, α := h0b20, and β := b220. These are

now elements living in the homotopy group of ko, where we are thinking of
h0 as “multiplication by 2 in π∗(ko).” Thus, just by looking at the below
picture, we have Z∧2 [η, α, β]/(η3, 2η, α2 − 4β, αη).
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Wow! We really did just get that ring structure with very little work.
Now, you’ll notice we’ve also written in the Toda bracket presentations of
some of the elements, because they are fun! Let’s see how we derived them.
We started with the Massey product presentations of the corresponding
elements:

Note that when we take the Massey product, we only consider the dif-
ferentials of highest degree.

Now, how do we get from the Massey product to the Toda bracket?
We apply the May convergence theorem (also known as Moss’s Theorem),
which we state in the 3-fold setting:

Theorem (May’s convergence theorem) [Theorem 4.1 , page 561[1]].
Given:

• a, b, c are permanent cycles in May Er page, and a =⇒ α, b =⇒ β,
c =⇒ γ, where α, β, γ ∈ π∗.

• 〈a, b, c〉 is defined in May Er

• 〈α, β, γ〉 is defined in Adams E2 (which is May E∞ up to extensions)

• No “crossing differentials”.

=⇒ ∃ one element in 〈a, b, c〉 which is a permanent cycle, and it converges
to an element in 〈α, β, γ〉 Adams E2.

5 Calculation of ExtA(2)(F2,F2) to stem 12 us-
ing May Spectral Sequence

As adventurers, we must humble ourselves – the case of A(1) was the first
little step. When I became confused in the tmf case I went back to the ko
case to get more familiar with the basic mechanics before carrying on with
the game.

We next turn to the case of topological modular forms, whose intricacies
will from the very outset require of us much greater attention and care. We
go out far enough to see something interesting.
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Just like the A(1) case, we use the Adam’s grading (t − s, s, u), so
we grade |hij | := (2j(2i − 1))− 1, 1, 1). Note that hn := h1n. We take the
convention of increasing the May weight by r when we apply the differential
r.

We take as given that

E∗,∗,∗1 = F2[h0, h1, h2, h20, h21, h30]

Now, though you may balk at tables of gradings, I emphasize that it is
extremely helpful to keep them near your bedside as you compute.

Our first page of generators thus looks like this:

t− s s u

h0 0 1 1
h1 1 1 1
h20 2 1 1
h2 3 1 1
h21 5 1 1
h30 6 1 1

We are given as d1:

d1(hn) = 0

d1(h20) = h0h1

d1(h21) = h1h2

d1(h30) = h0h21 + h2h20

We use a computer program, Ext Chart by Eric Peterson, to propagate
the d1 differentials via the Leibnitz rule, because it is a task perfect for a
computer.

Looking over his program output, we see that h1h30 + h21h20 survives.
Indeed, we check and see that the differentials of the individual components
(h1h30 and h21h20) both kill h20h1h21+h2

1h21. Since they both kill the same
thing, and we are working in the magical mod 2 world, they add and stay
as a cycle. We name x7 := h1h30 + h21h20 because it is in stem 7.

We take the perspective that if c kills a + b, then a = b. So via d1

differentials, we get that x7h0 = h2b20 (thus h2b
2
20 = b20x7h0) and h0h21 =

h2h20.
When we flip the page to E2, we see:
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t− s s u

h0 0 1 1
h1 1 1 1
h2 3 1 1
b20 4 2 2
b21 10 2 2
b30 12 2 2
x7 7 2 2

The first thing we do on the E2 page is uncover the Massey product
presentations of our generators, their true form, because this is how we
computed the d2 differentials in the case of A(1).

x7 = 〈h2, h1, h0, h1〉
b20 = 〈h0, h1, h0, h1〉
b21 = 〈h1, h2, h1, h2〉

b30 = 〈h0, h1,
(
h2 h0

)
,

(
h0

h2

)
, h1, h2〉

The Massey product for b30 must be a matrix Massey product because
h0 and h2 pair nontrivially so we cannot do the usual square trick. Instead,
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we must pair to get h0h2 + h2h0 such that they cancel (we are living in
mod 2 land).

We use these Massey product representations to derive the d2’s on the
generators, using the higher Leibnitz rule as we did before:

d2(x7) = h0h
2
2

d2(b20) = h3
1 + h2

0h2

d2(b21) = h3
2

To derive the differential of b30, we use that by the definition of x7,
x2

7 = h2
1b30 + b20b21:

0 = d2(x2
7) := h2

1d2(b30) + b20d2(b21) + b21d2(b20)

=⇒ h2
1d2(b30) = b20(h3

2) + b21(h3
1 + h2

0h2)

= b21h
3
1

The other two elements in the sum do not appear in the E2 page.
When we look at the picture below, we may using “h2

1 division” to get
that d2(b30) = h1b21. That is, d2(b30) = 0 =⇒ d2(h2

1b3) = 0 which is false.
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And thus:
d2(b30) = h1b21

After all of this work, we have our differentials. We propagate these
differentials using the Leibnitz rule, for example, lets look at b20x7, the
lone dot in (11, 4):

d2(b20x7) = x7h
3
1 + h2

0h2x7 + b20h
2
2h0

= x7h
3
1

because when we multiply out the other two using that x7 := h1h30 +
h21h20, we see that they died via d1’s.
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Taking a head count, we see that all squares of the generators of E2

are generators on the E3 page. We also find that we have some special
generators in view. We have in sight the families w1 := b220, α := h1b30

(the bottom of the tower in stem 12) and c0 = x7h1. Further, there are no
higher differentials because the gradings of possible differential pairs don’t
have the appropriate/compatible May gradings. Thus, this range of the
spectral sequence collapses on E3.

Why did we stop at 13? Besides the fact that illustrating large spectral
sequences is a pain, the range we illustrated is just enough to see an Adams
differential! We address this in the next section.

Just for fun, let’s uncover some of the surviving elements’ true forms!
They all have Massey product presentations.

We see that b220 = 〈h1, h
2
1, h1, h

2
1〉 (since b20 kills h3

1), but can we find a
representation of b220 using the Massey product for b20?

w1 = b220 = b20〈h0, h1, h0, h1〉

= 〈
(
h1 h2

)
,

(
h2

1 h2
0

h2
0 h2

1

)
,

(
h1 h2

h2 h1

)
,

(
h2

1

h2
0

)
〉

Now, let’s do c0:

c0 = x7h1

= 〈h2, h1, h0, h1〉h1

= 〈〈h1, h2, h1〉, h0, h1〉
= 〈h2

2, h0, h1〉 = 〈h2, h1, h0, h
2
1〉

Remark. Note that the symmetric Massey products are nonzero, this is
because we are considering the Massey products as living on the E∞ page.

Immediately to the right of the range shown (in stem 14) is the element
d0 := x2

7 = 〈c0, h0, h,h2〉.

Remark. Unrelated to this discussion, it is perhaps useful to note that
Sq0 commutes with Massey products. That is:

Sq0(〈a, b, c〉) = 〈Sq0(a), Sq0(b), Sq0(c)〉

This is because, if d?(e) = ab, then by Nakamura’s lemma, Sq0(d?(e)) =
d?(Sq0(e)) = Sq0(ab) = Sq0(a)Sq0(b). Thus, we may intimately apply
Nakamura’s lemma inside of Massey products. It is important to note that
the Sq0 case is special, we cannot apply this in the case of Sqi because
Sqi(ab) 6= Sqi(a)Sqi(b).
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Remark. If we wish to avoid Massey products, one thing humans do
better than computers, we can entirely rely on a computer program and
Nakamura’s lemma to compute the May spectral sequence converging to
ExtA(2)(F2,F2) in this range. Here is how we avoid all of the work (in a
way that presently only works for small ranges due to the limitations of
existing computer programs and the fact that we need more tricks past the
20 or 30th stem):

Start on the E1 page, take the d1’s of the generators h0, h1, h2, h20, h21, h30.
Applying Nakamura’s lemma (Sq1(d1(a)) = d2(Sq0(a)) up to some inde-
terminacy), we get the d2’s of h2

0, h
2
1, h

2
2, h

2
20, h

2
21, h

2
30 on the E2 page.

After propagating these differentials via the Leibnitz rule, we wish to
deduce the differentials on the rest of the generators, in our case and our
range, the only generator in E2 that is not a square of a generator on E1

is x7.
We derived earlier the equality x7h0 = h2b20, and via the Leibnitz rule,

we get: d2(h2b20) = h3
1h2 + h2

0h
2
2, where the first term is zero since h3

1h2 is
dead. So, we have: d2(h0x7) = h2

0h
2
2.

Then, we apply “h0 divisibility”: that is, d2(x7) = 0 =⇒ d2(h0x7) = 0
which is false. We get this implication because the differential is h0 linear.

There are no more generators in this range, and no more differentials
on future pages because the May weights don’t match up, so we are done.

6 On the cell structure of tmf

Now we are out to stem 13, we can see some interesting phenomena. We
will show that the following differential exists on the Adams E2 page:

15



This is done using the 4-spectral sequence method – an amped up com-
mutative diagram argument. We will show that the differential

d12 : 8[12]→ Ph2[0]

on the Atiyah-Hirzebruch Spectral Sequence (AHSS) implies

d2 : h3
0[12]→ Ph2[0]

on the Adams Spectral sequence (ASS).
Step 1. This method begins with the creation of a finite cell complex

X, a skeleton of tmf . Then, any Adams differential we find in X in this
range, we may push forward to tmf .

First of all, we can show what the cell diagram of tmf is up to dimension
12.

This can be done (assuming HF2∗(tmf) ' A//A(2)) by looking at
A//A(2) up to degree 12 and seeing that it is the above, thinking of σ as
Sq8, ν as Sq4, and so on.

Step 2. Now we begin the argument by going up one side: the cell-ASS
collapses on the E2 page (there are no differentials up to stem 13). The
cell-ASS is the cell-wise ASS - different cells have their own ASS, and this
is the direct sum of these ASS.

π∗(X)

Ext(X) ⊕π∗(Sn)

⊕Ext(Sn)

ASS AHSS

cell-ASSAAHSS
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Step 3. We exploit a relationship between 3-fold Toda brackets and
differentials in the AHSS of certain 3-cell complexes developed in Section 6
of the 61-sphere paper [6].

π∗(X)

Ext(X) ⊕π∗(Sn)

⊕Ext(Sn)

ASS AHSS

cell-ASSAAHSS

In particular, we use Lemma 6.1 to deduce our differential. Our 3-cell
complex satisfies the 2 hypotheses of the lemma: 8ν = 0 in π3 because
π3(X) = Z/8. The second hypothesis is also satisfied: 8π11(X) = 0 ⊆
σπ6(X) = 0. This is because π11 = Z/8, so 8π11 = 0. Further, π6 is
generated by h 2

2 = ν2, thus σπ6 = σν2 = 0 (though not pictured, it is
indeed the case that σν2 = 0).

Applying Lemma 6.1 to the cell complex:

We get:

d12(8[12]) = 〈8, ν, σ〉[0]

Theorem 2. 〈8, ν, σ〉 = {Ph2} up to indeterminacy.
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Proof.

〈8, ν, σ〉 = 〈2, 4ν, σ〉
= 〈2, η3, σ〉
= 〈2, η, η2σ〉
= 〈2, η, ν3 + ηε〉
= 〈2, η, ν3〉+ 〈2, η, ηε〉
= 〈2, η, ν〉ν2 + 〈2, η, ηε〉
= 0 + Ph2.

The last bracket’s well-definedness follows from the May convergence
theorem on the following Massey product 〈h0, h1, h1c0〉 = Ph2. This Massey
product is well defined because x7b20 (in 11, 4) kills h2

1c0 in the May SS.
Note that ν3 = η2σ+ηε is a relation in the homotopy groups of spheres.

Step 4. On the other side, we do the algebraic AHSS. This will simply
give us the name of the element we are attempting to kill. The AAHSS
is “coning off pieces” process, i.e., going from shifted copies of Ext(S) to
Ext(X).

π∗(X)

Ext(X) ⊕π∗(Sn)

⊕Ext(Sn)

ASS AHSS

cell-ASSAAHSS

We see that X:
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matches the cell structure of tmf quite explicitly by coning off the
fellows σ and ν sucessively.

Here’s the first 12 stems of the stable homotopy groups of spheres:

We cone off σ, and by this we mean that we place a shifted copy of the
stable stems such that the d1 on the shifted copy of 1 kills the generator σ.
We use 1[8] to denote the copy of 1 coming from the cell in dimension 8.
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We cone off νσ, here ν is h2.

This construction using the cell structure gives us the name of the source
and the target of the differential we are attempting to deduce: h3

0[12] →
Ph2[0].

Step 5. After we complete the AAHSS, we see that Ph2[0] is alive and
well in Ext(X). However, we know that Ph2[0] does not survive in π∗(X)
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because of the d12 killing it in the AHSS. So, something must kill Ph2[0]
in the Adams spectral sequence.

π∗(X)

Ext(X) ⊕π∗(Sn)

⊕Ext(Sn)

ASS AHSS

cell-ASSAAHSS

We use a filtration argument. Note Ph2[0] is in stem 11, filtration 5,
and we see in stem 12, there is only the h0 tower supported on h0b30 (i.e.
h3

0[12]). So, there is no other option for the source element which kills
Ph2[0] – it must be h3

0[12]. Thus,

d2 : h3
0[12]→ Ph2[0]

exists on the Adams spectral sequence for X, and we push it forward to
exist on the Adams spectral sequence for tmf . Tada! Our first Adam’s
differential!

7 Proof that A//A(1) ' H∗(ko;F2)

This proof is an expansion of a proof in an unpublished paper of John
Rognes, which was obtained by Dominic Culver.

Let’s orient ourselves before we dive in. We will assume the following
two things:

1. The cofiber sequence Σko
η∧ko−−−→ ko

c−→ ku
∂−→ Σ2ko. We define d := c∂.

2. H∗(ku;F2) ' A//E(1), where E(1) is the ideal generated by Sq1 and
[Sq1, Sq2] =: Q1.

Our proof will consist of the following steps:

1. Lemma 1: Show im d∗ ' A(Sq2).

2. Lemma 2: Show H∗ko ' A//E1/(im d∗)

Remark. We can think of this cofiber sequence as coming from the se-

quence S1 η−→ S0 → Cη → S2 by smashing with ko. Where η is the Hopf
map, and the map from ko to ku is the induced map of complexification of
bundles.
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Lemma 1. The composite map c∂ : ku→ Σ2ku induces right multiplica-
tion by Sq2 in cohomology. This composite map is more honestly presented

as Σ2c ◦ ∂. For it is ku
∂−→ Σ2ko composed with Σ2ko

Σ2c−−→ Σ2ku.

Proof. We look at the map from Cη → ku, which is the “smash with ko”
map. This is nonzero.

H2(Σ2Cη)
(c∂)∗←−−− H∗(Σ2ku) ' H2(Σ2ko)⊗H2(Σ2Cη)

The induced map on cohomology must also be nonzero, as the map behaves
like a projection onto one factor (c∂)∗ : 1 ⊗ x 7→ x. Thus the generator of
H2(Σ2ku), which we call Σ21, pulls back to the generator of H2(Σ2Cη).

Now, we examine the generator Σ21 of H2(Σ2Cη) as we pull it back to
H2(Cη). We pull it back over the map

Cη → S2 → Σ2Cη

We see that the generator Σ21 pulls back over this map

Cη
α−→ S2 β−→ Σ2Cη

to the nonzero class in degree 2, the only such nonzero class in H2(Cη) is
Sq2.

ku Σ2ku

Cη Σ2Cη

S2

Σ2c◦∂

β◦α

α β
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Since Cη ↪→ ku is an injection, the map Σ2c ◦ ∂ = d acts by sending
d∗(Σ21) = Sq2. So, im(d∗) ' (Sq2).

Next, we wish to show that A//A(1) is contained in H∗(ko;F2). Finally,
we will show that H∗(ko;F2) ' A//A(1) using an induction argument on
degrees.

Lemma 2. A//A(1) is isomorphic to H∗(ko) as an A-module.

Step 1. A//A(1) injects into H∗(ko) as an A-module.

Proof. Examine the exact sequence induced on cohomology by η, c, ∂:

Σ2H∗(ko) H∗(ku) H∗(ko) ΣH∗(ko)∂∗ c∗ η∗

We are further interested in the map d = Σ2c ◦ ∂ : ku → Σ2ku, so we
substitute H∗ku ' A//E(1) and add in the map d∗:

Σ2A//E(1)

Σ2H∗ko A//E(1) H∗ko

Σ−2A//E(1)

Σ2c∗
d∗

∂∗

Σ−2d∗

c∗

∂∗

Since A is a free A(1)-module, the map d∗ : Σ2A//E(1) → A//E(1)
– which by Lemma 1 sends 1 7→ Sq2(1) – is induced up from the A(1)-
module homomorphism d′ : Σ2A(1)//E(1) → A(1)//E(1) which is also
right multiplication by Sq2.

Let’s examine A(1)//E(1) by writing it out in full form, that is,

A(Sq1, Sq2)//A(Sq1, Sq2Sq1 − Sq1Sq2) = A(Sq2)

Now, note that this module has only 2 nonzero elements, 1 and Sq2.
Let us convince ourselves of this fact: Since E(1) acts freely on A(1) from
the right, A(1) has dim 8, E(1) has dim 4, so A(1)//E(1) has dim 2.

Applying the map d′ : Σ2A(1)//E(1)→ A(1)//E(1), that is, Σ2{1, Sq2} →
{1, Sq2}, which sends Σ21 7→ Sq2(1), we see that the image of this map is
Sq2(1), and the kernel is Sq2(Σ21) (since Sq2(Σ21) 7→ Sq2Sq2 = 0). That
is,

Σ2im(d′) = ker(d′)
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Therefore,
Σ2im(d∗) = ker(d∗)

Recall that we defined d∗ as (Σ2c◦∂)∗. Thus, using the diagram above,
and the simple fact that for any maps i, j: ker(i) ⊆ ker(i◦j), and im(i◦j) ⊆
im(j), we see:

ker(Σ2c∗) ⊆ ker((Σ2c ◦ ∂)∗) = Σ2im((Σ2c ◦ ∂)∗) ⊆ im(∂∗) = ker(c∗)

We may rewrite this, subsituting d∗ for (Σ2c ◦ ∂)∗:

ker(Σ2c∗) ⊆ ker(d∗) = Σ2im(d∗) ⊆ im(∂∗) = ker(c∗)

From this chain of inclusions, we get im(d∗) ' ker(c∗). By Noether’s
isomorphism theorem,

im(c∗) ' A//E(1)/(ker(c∗)) ' A//E(1)/(im(d∗))

By Lemma 1, im (d∗) = A(Sq2), and we see that im(c∗) ' A//E(1)/(Sq2) '
A//A(1). Thus,

A//A(1) ' im(c∗) ⊆ H∗ko

Step 2. A//A(1) is isomorphic to H∗(ko) as an A-module.

Proof. We construct the following map of exact sequences. We know by
Step 1 that the vertical maps are injective:

0 Σ2A//A(1) A//E(1) A//A(1) 0

ΣH∗ko Σ2H∗ko A//E(1) H∗ko ΣH∗ko

Σ2b

e a

b

Ση∗ ∂∗ c∗ η∗

We see that η∗ being zero in degree k forces A//A(1) and H∗ko to
be isomorphic in degree k. This is because η∗ being zero forces c∗ to be
surjective, and thus forces b ◦ a to be surjective. Thus, b must be surjective
in degree k, and b is injective by assumption, so b : A//A(1)→ H∗ko is an
isomorphism in degree k.

Our proof will be an inductive proof that η∗ is the zero map. We start
out our induction very simply: since ko is connective, we see that the map η∗

must be zero in degrees ≤ 0. In degree 1, we look at η∗ : H1(ko)→ ΣH1ko.
We know, given the group structure of π∗(ko), that H1ko = Z∧2 . Further,
just glancing at the first stem of the ASS for ko, we see that 2η∗ = 0. There
is only one map from Z∧2 → Z∧2 that when doubled is equal to zero, and
that is the zero map. Thus η∗ must be zero.

We take as the inductive hypothesis that η∗ is zero in degrees ≤ n. We
wish to show that this implies that η∗ is zero in degree n+ 1.
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We have the following chain of reasoning:

η∗ = 0 in deg ≤ n
=⇒ c∗ is surjective in deg ≤ n
=⇒ b is surjective (and thus is an isomorphism) in deg ≤ n
=⇒ Σ2b is an isomorphism in deg ≤ n+ 2

=⇒ ∂∗ is injective in deg ≤ n+ 2; since e is injective

=⇒ Ση∗ is zero in deg ≤ n+ 2

=⇒ η∗ is zero in deg ≤ n+ 1.

This concludes the inductive argument.
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