
Overview of the Classic Theory of p-Divisible Groups

Catherine Ray

We will discuss a victory of the 50s-60s: Lie theory for abelian schemes over perfect
fields of char p. For this lecture, until mentioned otherwise, we will fix a field k
which is perfect and of characteristic p. Further, everything is commutative.

1. Basic Definitons

Definition 1. Affine group scheme is SpecA where A is a bicommutative Hopf
k-algebra.

Definition 2. Finite group scheme is an affine group scheme represented by a
finite k-vector space A.

1.1. Z/pn, µpn , αp and their Hopf algebras. For example:

• Z/p = Spec HomSets(Z/p, k) = Spec
∏

Z/p k =
∐

Spec k;

• µpn = Spec k[x]/(xp
n − 1) is the pth roots of unity; ∆(x) = x⊗ x.

• αp = Spec k[x]/xp is the additive pth roots of unity; ∆(x) = x⊗ 1 + 1⊗x.
• E[p] ' µp × Z/p (the kernel of multiplication by p on an ordinary elliptic

curve)

1.2. Definition and examples of p-divisible groups. We give here examples
of p-div groups, Z/pn, µpn , A[pn].

Definition 3. A p-div group of height h is an inductive system (i.e., an inductive
limit before you take the limit) of commutative finite group schemes

G1
i1−→ G2

i2−→ G3
i3−→ · · ·

over k satisfying two properties:

(1) They must fit into an exact sequence

0→ Gn
in−→ Gn+1

pn−→ Gn+1 → 0

(that is, the kernel of the map pn on Gn+1 is the copy of Gn sitting inside
of Gn+1).

(2) rank(G1) = ph where h is an integer. (aka, G1 = SpecA1, and A1 is a free
k-algebra of dimension pn) This is called height.

Often, we will work with the individual finite group schemes rather than the
whole colimit, as they are easier to handle.

2. Formal groups are connected p-divisible groups

Definition 4. An affine finite group scheme is connected if its representing Hopf
algebra is a local ring.
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Definition 5. A divisible formal group F is such that this sequence is exact
(as a sequence of formal group schemes)

F [p]→ F
[p]−→ F

Note that we may make a p-divisible group out of a divisible formal group
scheme F .

F 7→ (F [p] ↪→ F [p2] ↪→ ...)

Remark. It is important here that our formal groups are indeed smooth formal
groups, which implies that they locally look like Spf of a power series ring quo-
tiented by a closed ideal.

Theorem 6. (Serre-Tate equivalence) There is an equivalence of categories be-
tween divisible smooth formal groups over k, and connected p-divisible groups over
k. The functor sends:

F 7→ (F [p] ↪→ F [p2] ↪→ ...)

Let’s look at some finite flat group schemes, and see what their connected
components look like.

• SpecFp[x]/xp is local, and thus connected.
• We see that for µp/Fp

= SpecFp[x]/(xp − 1) is local, since (x − 1)p, so

G0 = G, and thus G/G0 = SpecFp
• Z/p is completely etale. (clearly disconnected)

• E[p] ' µp × Z/p

Definition 7. An affine group scheme G over k is etale if G×k k̄ ' Spec k̄[G(k̄)]
(the coproduct of constant group schemes).

3. Connected-Etale Sequence and Splitting

Let G0 be the connected component of the identity. Then, take Gét := G/G0.

0→ G0 → G→ Gét → 0

This sequence in fact always splits (over a perfect field of char p > 0). And this
splitting is natural!

We can think of this on the level of representing Hopf algebras, A ' A0 ⊗Aét.

Example 8. (analogy)

H∗(Ω∞X;Fp) ' Hom(π0X,Z/p)⊗Fp
H∗(Ω∞X0;Fp)

(An example of a connected etale splitting of Hopf algebras, first part is “etale”
(the only difference is that there could be an infinite number of connected compo-
nents), second is connected)

Remark. Any map from G to an etale finite flat group scheme will factor through
Gét.
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Remark. The fact that G0 is a sub-group scheme relies on the general fact that
if X is connected and has a rational point over the base field, then it is geomet-
rically connected. If X is geometrically connected, then X ×k X is geometrically
connected.

Remark. We define this exact sequence for finite flat group schemes, then take
colimit to get the exact sequence for p-divisible groups.

4. Basics of Dieudonne Theory over k

4.1. Dieudonne Theory I: Classification up to Isomorphism. Moral: pDiv
is equivalent to a category of modules, which one?

Where do these theorems come from? Manin proved them for a special case
using the combination of a formal categorical statement of Gabriel, and some
geometric input [2]. (Then he used descent and duality, discussed in the last
section of [1], to prove the whole statement.)

We now discuss Gabriel’s theorem on taking an abelian category and construct-
ing a category of a modules.

4.1.1. Gabriel’s Theorem.

Definition 9. An injective hull of an object c in abelian category C is a monomor-
phism c ↪→ I to an object I ∈ C such that:

• (injective) Hom(−, I) is exact
• (hull) c ↪→ I and there are no “smaller” I, that is, every other monomor-

phism from c to an injective object in C factors through this morphism.

Definition 10. Let a locally finite category be an abelian category with a finite
set of generating objects, enough injectives, and “enough” colimits and limits.

Remark. (setup) Let C be a locally finite category, (Sα) the family of all simple
objects of C, and Iα the injective hull of Sα. Let I =

∐
Iα; the “universal” injective

object. Let E := EndC(I). Topologize E by taking as a base of neighborhoods of
zero the system of all left ideals I ⊂ E of finite colength. E is complete wrt this
topology. We denote by ME the category of complete topological left E-modules,
whose topology is linear and has a base of neighborhoods of zero consisting of all
sub-modules of finite colength.

Theorem 11. The contravariant functor C → ME, X 7→ Hom(X, I) is an
antiequivalence between the categories.

There is little hope to compute injective objects for a general category, nor the
endomorphisms of an object in a category. The geometric input, and how we get
Dieudonne theory from this formal statement, is that we know the generators of
the category of certain finite flat group schemes. This category we will consider if
Ind of locally-local finite group schemes, fGrp`,`:

Definition 12. A finite group scheme SpecA is locally-local, if A and A∗ are
both local rings.

3



The generator of Ind(fGrp`,`) is αp, and we know that the injective hull of αp is
the colim of truncated Witt-schemes.

Definition 13. The Witt scheme is a ring scheme whose k points are the rings of
k-Witt vectors.

Remark. F and V act on a point of the Witt scheme as:

F : (x0, x1, x2, ...) 7→ (xp0, x
p
1, x

p
2, ...)

V : (x0, x1, x2, ...) 7→ (0, x0, x1, ...)

Definition 14.

W r := ker(W
F r

−−→W )

Ws := coker(W
V s

−−→W )

W r
s = Spec k[x0, ..., xs]/(x

pr

0 , ..., x
pr

s )

colimW r
s is an infinite dimensional formal group, an an object in Ind(fGrp`,`).

Now all that is left is to understand

EndInd(fGrp`,`)(colimr,sW
r
s )

It ends up being

W (k){F, V }/(∼)

These are formal variables, let’s discuss the equivalence relations. We need
Cartier duality to think of these relations properly, but suffice to say (for a ∈W (k),
where σ is the Frobenius in Witt vectors):

F (a) = σ(a)F

V (σ(a)) = aV

FV = p

Theorem 15. (finite Dieudonne) There is a categorical anti-equivalence between
finite group schemes of order ph; and E-modules with W (k)-length n.

Corollary 16. (Dieudonne up to isomorphism) There is a categorical anti-equivalence
between pDiv of height h; and free E-modules which are free as W (k)-modules (of
rank h).

Proof. Taking a colimit over diagrams on one side, and a limit on the other. The
freeness comes from the fact that with torsion, the length of the W (k)-module
doesn’t grow fast enough to make it into the limit. �

4



4.2. Dieudonne Theory II: Classification up to Isogeny. Can we under-
stand this category of modules? Well, to understand it we must make some sacri-
fices.

Definition 17. An isogeny is a map whose kernel is a finite flat group scheme.

Let EF be W (k)[ 1
p ]{F}/(Fa = σ(a)F ).

Theorem 18. (Dieudonne up to isogeny) The category of p-divisible groups over
up to isogeny pDivisog has a fully faithful embedding into the category of finitely
generated EF -modules.

Theorem 19. (Dieudonne-Manin Classification Theorem)

• The category of finitely generated EF -modules is semi-simple.
• If k = k̄ the simple objects are of the form Gs,r := EF /EF (F r − ps). This
s/r is called the slope.

Remark.
EF /EF (F r − ps) ' EF ⊗E E/E(F r−s − V s)

Remark. A technical point on simple objects in the case of general k. Given a
simple module M over k̄ of slope s/r, then Aut(M) = D∗, where D is a skew field
over Qp with invariant s/r. There are different simple objects of slope s/r over k,
they are of the form H1(Gal(k̄/k), D∗), for different actions of Gal(k̄/k) on D∗.

Example 20. Let’s discuss some isocrystals of familiar p-divisible groups:

• µp∞ = Gm[p∞] is isogenous to G1/1

• Z/p∞ ' Qp/Zp is isogenous to G0/1

• For an ordinary elliptic curve, G0/1 ⊕G1/1.
• For a supersingular elliptic curve, G1/2

• For the Honda formal group of height h over Fp is G1/h, EF /(F
h − p),

this has basis {1, F, ..., F (h−1)} and

V F i =

{
Fh−1, i = 0;

pF i−1, 1 ≤ i ≤ h− 1

Remark. The left category EF−Modf.g. is sometimes called the category of isocrys-
tals.

5. p-divisible groups over a more general base

We can get pretty far with fields.

Theorem 21. (Reynaud-Tate) (Tate’s rigidity theorem) Let R be a local DVR
with residue characteristic p, and K := Frac(R) of characteristic 0. Then, the
generic fiber functor is fully faithful.

pDiv/R → pDiv/K

G 7→ GK
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This tells us that we can understand a p-divisible group over SpecR by its
generic fiber. To do p-divisible groups over more general schemes, we repeat the
original definition but make our constituent group schemes finite flat, rather than
just finite. This was implicit before, but we were working over a field so everything
was automatically flat.

Definition 22. A p-div group of height h is an inductive system (i.e., an in-
ductive limit before you take the limit) of commutative flat group schemes (locally
of finite presentation)

G1
i1−→ G2

i2−→ G3
i3−→ · · ·

over a base scheme S satisfying two properties:

(1) They must fit into an exact sequence

0→ Gn
in−→ Gn+1

pn−→ Gn+1 → 0

(that is, the kernel of the map pn on Gn+1 is the copy of Gn sitting inside
of Gn+1).

(2) rank(G1) = ph where h is a locally constant function h : S → Z

Fact: h is invariant under base change S′ → S. So p-divisible groups are great
for deformation theory.

6. Serre-Tate Theorem

Set up. Let R be a base ring where p is nilpotent. p ∈ I ⊂ R is a nilpotent
ideal. Let AbSch/R be the category of abelian schemes over R. Let Def(R,R0) be
the category of triples (A0, G, ε) consisting of:

• A0 ∈ AbSch/R0

• G ∈ pDivR
• an isomorphism in pDiv/R0

;

ε : G×R R0
'−→ A[p∞]

Theorem 23. Serre Tate (Katz 1.2.1 [3]): Let R and R0 be as above. Then the
functor

AbSch/R → Def(R,R0)

A 7→ (A0, A0[p∞], ε)

is an equivalence of categories.

In other words, we can completely understand the deformations of an abelian
scheme in terms of the deformations of its associated p divisible group.

Remark. Note that this does not depend on the choice of G0 := G×RR0 ∈ pDiv/R0
.

That is, we are not fixing a group which we are lifting. This is a more general
statement. We can take a fiber and recover the case that Betram and Alice discuss,
where G0 is fixed.
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