ZETA FUNCTIONS AND THH

KLEINES TOPOLOGIE SEMINAR JUNE 2025

TALK 3: ZETA FunNcTIONS AND THH (RIN RAY)

We are going to play with counting points on curves in finite characteristic.

Definition 0.1. Given a smooth curve over IF,, the zeta function is defined as
X (Fp)l -
X,s):=¢e ms,
(X, s) Xme_l =

Classically, the Grothendieck-Lefschetz formula (a la Weil conjectures), allows us to
rewrite it.

Theorem 0.2. Given a smooth curve over IF,, the zeta function

C(X,s) = Hdet(l — ¢ *|H(X, Q)Y

41

Here ¢ denotes the action of Frobenius on the {-adic cohomology of X .
Remark. Note that, if we so choose, we can make a convenient change of variables
Z(X,q*) = (X, ).

This is a meromorphic function, and we may define its holomorphic counterpart.
Definition 0.3.

¢*(X,5) = (1 — p=") (X, ),

where p, is the order of the pole at s = n.
Remark. This is the first nonzero taylor series coefficient of ((X, s).

Main Goal. Tease (Milne’s Theorem (MilS6), Hyslop (Hys2/)) Let n and s be integers,
as s — n (p-adically)

C(X,s) = x(X,Z(n), e)x (X, N="WQx ) (1 — p*")Pm,
where p, denotes the order of the pole at s = n.
In other words, our main theorem can be stated as
Main Goal.
¢ (n)lp = X(X, Z5™ (n), ) x (X, N W) (1 = p )™

It will turn out that the essence of this comparison is a lemma in linear algebra. We
will show that the Grothendieck-Lefschetz form of the zeta function is comparable to
the Lichtenbaum one.

Remark. These pieces on the right are the graded pieces of TC' and its friend TC'™,
defined later in the talk.

Before we show that, let’s explore some context.
_ 1
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0.1. Sidenote On Special Values for Number Fields and K-theory. Why might
you care about this strange creature (*? For number fields, it’s counter part is defined
as follows.

Definition 0.4.
(" (Op,s) =lim(n+ s — 1)*((OF, s)
n—s

We define the regulator of Dirichlet, which computes the volume of a lattice.

Definition 0.5. The Dirichlet requlator map is the logarithmic embedding,
o2: OF fup — RO,
The covolume of the image lattice is the Dirichlet requlator RY.
Remark. Recall that v + r9 — 1 is the rank of the units in Op.
Theorem 0.6. (Dirichlet Class Number Formula)
_ #Pic(OF)

* o Dr
¢Or,0) = H#ur B

We know that

Corollary 0.7. (Dirichlet Class Number Formula)
KO
#Kl (OF)tors

This is the historical start of class field theory and the first connection between zeta
functions and K-theory, and what motivated the Lichtenbaum conjectures.

C"(OF,0) = Rp

0.2. (-adic zeta functions and Tate twists. Let’s get back to linear algebral

Theorem 0.8. (Neu79) (3.1) Let X be a (geometrically connected algebraic Fy-scheme).
Let F be a Z; sheaf on X, and F(n) its n-fold Tate twist, the for every integer n such
that q" is not an eigenvalue (i.e., no poles), then the cohomoloy groups are finite, trivial
fori>2dim(X)+ 1, and

[C(Xon, Fle = H (X, F(n))| D

Proof. We use the linear algebra play below and the fact ‘that by Lemma 0.9 (below)
there’s an isomorphism of I' modules, H4(X, F(n)) ~ HY(X,F)(n). This gives us that

(0q " [H'(X, F) = (¢|H'(X, F(n)),
Applying Lemma 0.9 we get
| det(1 — gpqin‘Hi(Y,}—@) Qo)le = | det(1 — g0|Hi(7, F(n) @ Qe
= [ 1@ 7 (X, Fn)
J
The following is a short exact sequence:



ZETA FUNCTIONS AND THH 3

H'(X, Zy(n))r = H(X, Zo(n)) = H(X, Zy(n))"

This gives us a lil spectral sequence

H/(T,H (X, F(n)) = H'* (X, F(n))

1)i+1

S, Pl = [T1et(1 = oo |HI(X, Q)
—HH|HJ T, H(X, F(n))|y
—HHIH] HT (X, Fn));
= HH \H (X, F(n))|{D

We then smooth our spectral sequences from earlier to get back the formula we claim.
O

(- 1 it+j+1

1)i+1

Its this “Tate-twist” type interpretation of the zeta function that most directly con-
nects to K-theory. (We talked about the relationship between etale cohomology and
K-theory in the Tate-Poutou duality seminar.) Here is a sketch of the approach, again,
it comes down to a linear algebra argument.

Lemma 0.9. (New70) (3.2) Let T' = Galg,, and let ¢ be a topological generator of T'.
Let A be a finitely generated Zg-module with continuous I'-action. (Then, if det(1 —
plA Xz, Q) #0)

|det(1 — | A ®z, Q)¢ = [ [ #H (T, A)Y

Proof. (sketch)
HO(T,A) = A" = ker(1 — ¢|A),
HYT', A) = Ar = coker(1 — ¢|A)

and H' = 0 for 7 > 1, sine I' has cohomological dimension one. Consider the torsion
submodule T of the Z,~module A. Since T is a finite I'-module, the exact sequence

0T -7 %7 5o,

shows that |H°(T,T)| = |[HY(T,T)|. Therefore, we can assume that A is free. In this
case A is a lattice in the finite dimensional vector space A®z, Q. If det(1—¢) # 0, then
HO(T, A) ~ 0. We conclude by showing that |[H'(T, A)| = | det(1 — p|A ®z, Q) O



4 KLEINES TOPOLOGIE SEMINAR JUNE 2025

0.3. p-adic zeta functions and syntomic cohomology. That was a warmup for
the equichar case. The definition of the zeta function is independent of choice of ¢, and
the following is also true:

Theorem 0.10. For X a curve over a finite field,
(X, Hdet (1— g~ |H'(X,Q,) "V,

where we are taking the integral cristalline cohomology of X computed as the cohomology
of the deRham-Witt complex W5 @ Q,.

Why might this be interesting? Well, we might want the p-local information (the
p-valuation).

Let’s define this. First, remember that the de Rham complex is Q% s Q% i
with differential given by d.

Theorem 0.11. If X has a lift to W (k), which we call X, then, there is an iso

H (X))~ Hip(X).

Ccris

Remark. Note that this is why we do not take the geometric completion of X in the
equichar case!

If our X does not come with a lift to W (k), (which it often doesn’t, for example it
doesn’t if if X is supersingular), we cannot just compute the cristalline cohomology with
said lift. Instead of lifting the geometric object X itself, we can just lift the algebraic
de Rham complex Q.

To define the deRham Witt complex, we must first define the Witt vectors.

Definition 0.12. [t’s a function W(—): CRing — CRing which sends R — W (R).
It’s a ring with natural morphisms

F:W(R) = W(R) V:W(R)— W(R),

such that F'V = p. Also, the following sequence is short exact 0 — W (R) LN W(R) —
R — 0.

Definition 0.13. If k is an arbitrary F,-algebra, and X a scheme over k, there’s a
cdga WQX/k, called the deRham Witt complez, together with maps of graded groups

such that FV = p. Also, the following sequence is short exact 0 — WQ*X/k — Vdv)
WXk — QF 0. If X is smooth and k, perfect, then

cms(X/W ( )) = H*(X7 WTLQX/k)?
where W, Qy ) = W, /(V",dV").

We will now rely again on a linear algebra formula (geometry of numbers feeling).
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Lemma 0.14. (Main Sauce!!) Suppose V is a finite dimensional Q,-vector space, and
F:V =V is an automorphism of V. If there are Z,-lattices

L'CLCV,
iof F' restricts to a linear map

FI¥. L' > L.

/ L
det(F)|, = |coker(F|¥ . L' — L ’1||.
P ' ]

Remark. Let’s get some intuition here. Let a lattice A span R", and consider a Z-basis
for the lattice, {ay, ..., a, }, and let A be a basis with those vectors as the rows. Consider
R™/A an n-dimensional torus, compact with finite volume equal to the fundamental
domain |detA|. If A’ is a sublattice of A, then

(R"/A) = vol(R"/A)|A/N]

Our goal is to analyze the determinant of 1 — p~"¢: H*(X,Q,) — H*(X,Q,), we
want to look for lattices relating to the rational crystalline cohomology of X. Natural
choice is integral lattices, W x we just set up (thanks to Deligne-Illusie)

N=WQx = (" VIWQx = p" 2VIWQx — - VIVQE ! = Q% — ...)
We have
op " N="WQx — WQy,
and a map 1 induced by the filtration to NZWQx ~ WQy,

Definition 0.15. Recall that Z¥™(n)(X) = (pp™™ — 1 : N="WQyx — Wx).
Remark. When p is invertible on X, the syntomic complex coincides with the Tate twist
fo = (Z/p")™ (n)(X).

Let’s sketch the role of each object in the linear algebra theorem. In the following
we mean H*(X,—) applied to each.

Fi=(pp™ —1): WQx ®z, Q, = Wy ®z, Q,
L' = N""WQx
L =WQx
cokerF|f, : L' — L :=Z2™(n)(X)
L/L == WQx/NZ"WQyx = N<"W .

We're all set up! From this, we check that our object play the correct roles, and thus
prove our main goal.
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Theorem 0.16. (Milne’s Theorem) Assume X/, is a smooth proper scheme of di-
mension d, and the Frobenius acts semisimply on H*(X, WQx ®z, Q,, then

(X n)], " = x(X, 23" (n), e)x (X, N "W Q).

i other words,
(X, n)l, HI (RT(gry, TC(X)[=2n]) R (m3h(TCH (X))

Proof. 1f there is no pole of ((X,s) at s = n, then the endormorphism 1 — pp™™ is
invertible on each H'(X, WQx ®7,Q,, then our lemma applies, because modulo torsion
the lattices are contained in H*(X, W{lx).

Let’s look at the torsion, we have two long exact sequences of interest, coming from
the cokernel vs the quotient.

CHY(X, Z,(n)) = HY(X, N>"WQy) 224 Hi(X, Wy) —

The torsion submodules of H'(X, WQyx) and H'(X, N="WQx) contribute a factor
of their quotient to the power (—1)"! similarly, the long exact sequence coming from
the quotient

- H'(X,Z,(n)) — H'(X, N="WQy) = H'(X,WQx) —

contributes a factor of their quotients to the power (—1)’. Thus, the torsion terms
cancel in the product x(X, ZY™(n))x (X, N="WQy).

/ L
| det(F)|, = |coker(F|¥ : L' — L)|™* ]lL’l\

This implies that

1)i+1

X(X, 22 (n)) = [ leoker(FI}* : L — Ly)|©

i

X (X, N Qy) Hl |“

Thus, putting it all together, we get the conclusmn. If there is a pole, this is where
we need the assumption of semisimplicity: L; and L} split up into A; & B; and A, & B!
respectively, such that B, — B! is an iso after inverting p. We focus on the A; bit,

Al =%ker(F: L;— L;) A =ker(F:L;,— L;).

We refer the reader to (Hys24) or (Sch82) for the rest of this argument. The essence
is that we want to get a finite complex. To do this, it seems one shows we can forget
about B and just work with A;, and these turn out to correspond to cupping with an
euler class. OJ

Remark. Away from poles of ((X, s),
C(X,n) =((X,n)=Z(X,p™").
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C(X,n) is the number we get after correcting for the pole at n (which is where this
(Ip~™ — p~®)~P» term comes from, and is why we need to take a cup product with the
Euler class e in that case to get a complex with finite cohomology).

We introduce a spectrum T'C'", analogously to T'C'~, which is the fiber of the map
TC+ = fib(TC~ =5 TP)

gryTC(X)[—-2n] = Z;""(n)(A)
M TCT (X)) = N<"WQy
THTC™(X)) = N> WOy
Remark. This follows from the picture Edith painted for us last time:

Rrsyn(gr%TOA[_2n]) B— Rrsyn(ﬁgh(TCE)) — Rrsyn(ﬂsh(TPA))

n n

| ! !

Zp(n)(A) » N2"Aj{n} ——— Aa{n}

Thus, our grand finale.

0.4. End Remarks. Why would this be interesting? Well, for example, this presenta-
tion of a zeta function in terms of localization invariants can be described and discussed
more generally. We can also ask for an L-function which takes in number fields and
function fields alike. Or even spectra (ongoing work of Gabe and me)!

Tate’s thesis showed us that all L-functions can be presented adelically, and that this
is their ”correct form” in some sense, they can all be analytically continued. We can use
that K-theoretic objects are described integrally to define correction terms/archimedian
terms in the full L-function, as was done by Flach-Morin last year. This is not the
case for T'C, it is defined as a product over only nonarchimedian primes, we need
an archimedian version of it as well. I believe this may be resolved by the ongoing
foundational work of Wagner.
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