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KLEINES TOPOLOGIE SEMINAR JUNE 2025

Talk 3: Zeta Functions and THH (Rin Ray)

We are going to play with counting points on curves in finite characteristic.

Definition 0.1. Given a smooth curve over Fq, the zeta function is defined as

ζ(X, s) := exp
∞∑

m=1

|X(Fqm)|
m

q−ms.

Classically, the Grothendieck-Lefschetz formula (a la Weil conjectures), allows us to
rewrite it.

Theorem 0.2. Given a smooth curve over Fq, the zeta function

ζ(X, s) =
∏
i

det(1− φq−s|H i(X,Qℓ)
(−1)i+1

Here φ denotes the action of Frobenius on the ℓ-adic cohomology of X.

Remark. Note that, if we so choose, we can make a convenient change of variables
Z(X, q−s) = ζ(X, s).

This is a meromorphic function, and we may define its holomorphic counterpart.

Definition 0.3.
ζ∗(X, s) = lim

n→s
(1− pn−s)−ρnζ(X,n),

where ρn is the order of the pole at s = n.

Remark. This is the first nonzero taylor series coefficient of ζ(X, s).

Main Goal. Tease (Milne’s Theorem (Mil86), Hyslop (Hys24)) Let n and s be integers,
as s → n (p-adically)

ζ(X, s) ≈ χ(X,Zsyn
p (n), e)χ(X,N<nWΩX)(1− ps−n)ρn ,

where ρn denotes the order of the pole at s = n.

In other words, our main theorem can be stated as

Main Goal.

|ζ∗(n)|p = χ(X,Zsyn
p (n), e)χ(X,N<nWΩX)(1− ps−n)ρn

It will turn out that the essence of this comparison is a lemma in linear algebra. We
will show that the Grothendieck-Lefschetz form of the zeta function is comparable to
the Lichtenbaum one.

Remark. These pieces on the right are the graded pieces of TC and its friend TC+,
defined later in the talk.

Before we show that, let’s explore some context.

Date: Monday 14th July, 2025.
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0.1. Sidenote On Special Values for Number Fields and K-theory. Why might
you care about this strange creature ζ∗? For number fields, it’s counter part is defined
as follows.

Definition 0.4.
ζ∗(OF , s) = lim

n→s
(n+ s− 1)ρsζ(OF , s)

We define the regulator of Dirichlet, which computes the volume of a lattice.

Definition 0.5. The Dirichlet regulator map is the logarithmic embedding,

ρDF : O×
F /µF → Rr1+r2−1.

The covolume of the image lattice is the Dirichlet regulator RD
F .

Remark. Recall that r1 + r2 − 1 is the rank of the units in OF .

Theorem 0.6. (Dirichlet Class Number Formula)

ζ∗(OF , 0) = −#Pic(OF )

#µF

RDF

We know that
K0(OF ) ≃ Z⊕ Pic(OF ) K1(OF ) ≃ O×

F .

Corollary 0.7. (Dirichlet Class Number Formula)

ζ∗(OF , 0) = −#K0(OF )tors
#K1(OF )tors

RD
F

This is the historical start of class field theory and the first connection between zeta
functions and K-theory, and what motivated the Lichtenbaum conjectures.

0.2. ℓ-adic zeta functions and Tate twists. Let’s get back to linear algebra!

Theorem 0.8. (Neu79) (3.1) Let X be a (geometrically connected algebraic Fq-scheme).
Let F be a Zℓ sheaf on Xet, and F(n) its n-fold Tate twist, the for every integer n such
that qn is not an eigenvalue (i.e., no poles), then the cohomoloy groups are finite, trivial
for i > 2dim(X) + 1, and

|ζ(X,n,F)|ℓ =
∏
i

|H i(X,F(n))|(−1)i+1

.

Proof. We use the linear algebra play below and the fact that by Lemma 0.9 (below)
there’s an isomorphism of Γ modules, Hq(X,F(n)) ≃ Hq(X,F)(n). This gives us that

(φq−n|H i(X,F) ≃ (φ|H i(X,F(n)),

Applying Lemma 0.9 we get

| det(1− φq−n|H i(X,F ⊗Qℓ)|ℓ = | det(1− φ|H i(X,F(n)⊗Qℓ)|ℓ
=

∏
j

|H i(Γ, H i(X,F(n))|(−1)i

The following is a short exact sequence:
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H i(X,Zℓ(n))Γ → H i+1(X,Zℓ(n)) → H i+1(X,Zℓ(n))
Γ

This gives us a lil spectral sequence

Hj(Γ, H i(X,F(n)) ⇒ Hj+i(X,F(n))

|ζ(X,n,F)|ℓ =
∏
i

| det(1− φq−n|H i(X,F ⊗Qℓ)|(−1)i+1

ℓ

=
∏
i

∏
j

|Hj(Γ, H i(X,F(n))|(−1)i+j+1

ℓ

=
∏
i

∏
j

|Hj(Γ, H i−j(X,F(n))|(−1)i+1

ℓ

=
∏
i

∏
j

|Hj(X,F(n))|(−1)i+1

ℓ

We then smooth our spectral sequences from earlier to get back the formula we claim.
□

Its this “Tate-twist” type interpretation of the zeta function that most directly con-
nects to K-theory. (We talked about the relationship between etale cohomology and
K-theory in the Tate-Poutou duality seminar.) Here is a sketch of the approach, again,
it comes down to a linear algebra argument.

Lemma 0.9. (Neu79) (3.2) Let Γ = GalFq , and let φ be a topological generator of Γ.
Let A be a finitely generated Zℓ-module with continuous Γ-action. (Then, if det(1 −
φ|A⊗Zℓ

Qℓ) ̸= 0)

|det(1− φ|A⊗Zℓ
Qℓ)|ℓ =

∏
i

#H i(Γ, A)(−1)i .

Proof. (sketch)

H0(Γ, A) = AΓ = ker(1− φ|A),
H1(Γ, A) = AΓ = coker(1− φ|A)

and H i = 0 for i > 1, sine Γ has cohomological dimension one. Consider the torsion
submodule T of the Zℓ-module A. Since T is a finite Γ-module, the exact sequence

0 → T Γ → T
1−φ−−→ TΓ → 0,

shows that |H0(Γ, T )| = |H1(Γ, T )|. Therefore, we can assume that A is free. In this
case A is a lattice in the finite dimensional vector space A⊗Zℓ

Qℓ. If det(1−φ) ̸= 0, then
H0(Γ, A) ≃ 0. We conclude by showing that |H1(Γ, A)| = | det(1− φ|A⊗Zℓ

Qℓ) □
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0.3. p-adic zeta functions and syntomic cohomology. That was a warmup for
the equichar case. The definition of the zeta function is independent of choice of ℓ, and
the following is also true:

Theorem 0.10. For X a curve over a finite field,

ζ(X, s) =
∏
i

det(1− φq−s|H i(X,Qp)
(−1)i+1

,

where we are taking the integral cristalline cohomology of X computed as the cohomology
of the deRham-Witt complex WΩ∗

X ⊗Qp.

Why might this be interesting? Well, we might want the p-local information (the
p-valuation).

Let’s define this. First, remember that the de Rham complex is Ω0
X/k → Ω1

X/k → · · · ,
with differential given by d.

Theorem 0.11. If X has a lift to W (k), which we call X, then, there is an iso

H∗
cris(X) ≃ H∗

dR(X).

Remark. Note that this is why we do not take the geometric completion of X in the
equichar case!

If our X does not come with a lift to W (k), (which it often doesn’t, for example it
doesn’t if ifX is supersingular), we cannot just compute the cristalline cohomology with
said lift. Instead of lifting the geometric object X itself, we can just lift the algebraic
de Rham complex ΩX .

To define the deRham Witt complex, we must first define the Witt vectors.

Definition 0.12. It’s a function W (−) : CRing → CRing which sends R 7→ W (R).
It’s a ring with natural morphisms

F : W (R) → W (R) V : W (R) → W (R),

such that FV = p. Also, the following sequence is short exact 0 → W (R)
V−→ W (R) →

R → 0.

Definition 0.13. If k is an arbitrary Fp-algebra, and X a scheme over k, there’s a
cdga WΩ∗

X/k called the deRham Witt complex, together with maps of graded groups

F : WΩ∗
X/k → WΩ∗

X/k V : WΩ∗
X/k → WΩ∗

X/k,

such that FV = p. Also, the following sequence is short exact 0 → WΩ∗X/k
(V,dV )−−−−→

WΩ∗X/k → Ω∗
X/k → 0. If X is smooth and k, perfect, then

H∗
cris(X/Wn(k)) ≃ H∗(X,WnΩ

∗
X/k),

where WnΩ
∗
X/k := WΩ∗

X/k/(V
n, dV n).

We will now rely again on a linear algebra formula (geometry of numbers feeling).
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Lemma 0.14. (Main Sauce!!) Suppose V is a finite dimensional Qp-vector space, and
F : V → V is an automorphism of V . If there are Zp-lattices

L′ ⊆ L ⊆ V,

if F restricts to a linear map

F |L′

L : L′ → L.

| det(F )|p = |coker(F |L′

L : L′ → L)|−1 |L|
|L′|

.

Remark. Let’s get some intuition here. Let a lattice Λ span Rn, and consider a Z-basis
for the lattice, {a1, ..., an}, and let A be a basis with those vectors as the rows. Consider
Rn/Λ an n-dimensional torus, compact with finite volume equal to the fundamental
domain |detA|. If Λ′ is a sublattice of Λ, then

(Rn/Λ′) = vol(Rn/Λ)|Λ/Λ′|

Our goal is to analyze the determinant of 1 − p−nφ : H∗(X,Qp) → H∗(X,Qp), we
want to look for lattices relating to the rational crystalline cohomology of X. Natural
choice is integral lattices, WΩX we just set up (thanks to Deligne-Illusie)

N≤nWΩX := (pn−1VWΩX → pn−2VWΩX → · · ·VWΩn−1
X → WΩn

X → . . . )

We have

φp−n : N≤nWΩX → WΩX ,

and a map 1 induced by the filtration to N≥0WΩX ≃ WΩX ,

Definition 0.15. Recall that Zsyn
p (n)(X) := (φp−n − 1 : N≥nWΩX → WΩX).

Remark. When p is invertible on X, the syntomic complex coincides with the Tate twist

µ⊗i
pn ≃ (Z/pi)syn(n)(X).

Let’s sketch the role of each object in the linear algebra theorem. In the following
we mean H∗(X,−) applied to each.

F := (φp−n − 1) : WΩX ⊗Zp Qp → WΩX ⊗Zp Qp

L′ := N≥nWΩX

L := WΩX

cokerF |LL′ : L′ → L := Zsyn
p (n)(X)

L/L′ := WΩX/N≥nWΩX = N<nWΩX .

We’re all set up! From this, we check that our object play the correct roles, and thus
prove our main goal.
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Theorem 0.16. (Milne’s Theorem) Assume X/Fp is a smooth proper scheme of di-
mension d, and the Frobenius acts semisimply on H∗(X,WΩX ⊗Zp Qp, then

|ζ∗(X,n)|−1
p = χ(X,Zsyn

p (n), e)χ(X,N<nWΩX).

in other words,

|ζ∗(X,n)|−1
p =

∏
i

|(RiΓ(grnMTC(X)[−2n])RiΓ(πsh
2n(TC

+(X))))|(−1)i+1

p .

Proof. If there is no pole of ζ(X, s) at s = n, then the endormorphism 1 − φp−n is
invertible on each H i(X,WΩX⊗Z pQp, then our lemma applies, because modulo torsion
the lattices are contained in H∗(X,WΩX).

Let’s look at the torsion, we have two long exact sequences of interest, coming from
the cokernel vs the quotient.

· · ·H i(X,Zp(n)) → H i(X,N≥nWΩX)
φp−n−1−−−−→ H i(X,WΩX) → · · ·

The torsion submodules of H i(X,WΩX) and H i(X,N≥nWΩX) contribute a factor
of their quotient to the power (−1)i+1, similarly, the long exact sequence coming from
the quotient

· · ·H i(X,Zp(n)) → H i(X,N≥nWΩX) → H i(X,WΩX) → · · ·
contributes a factor of their quotients to the power (−1)i. Thus, the torsion terms
cancel in the product χ(X,Zsyn

p (n))χ(X,N≤nWΩX).

| det(F )|p = |coker(F |L′

L : L′ → L)|−1 |L|
|L′|

.

This implies that

χ(X,Zsyn
p (n)) =

∏
i

|coker(F |L
′
i

Li
: L′

i → Li)|(−1)i+1

χ(X,N≤nWΩX) =
∏
i

|Li

L′
i

|(−1)i .

Thus, putting it all together, we get the conclusion. If there is a pole, this is where
we need the assumption of semisimplicity: Li and L′

i split up into Ai ⊕Bi and A′
i ⊕B′

i

respectively, such that Bi → B′
i is an iso after inverting p. We focus on the Ai bit,

A′
i = ker(F : L′

i → Li) A′
i = ker(F : L′

i → Li).

We refer the reader to (Hys24) or (Sch82) for the rest of this argument. The essence
is that we want to get a finite complex. To do this, it seems one shows we can forget
about B and just work with Ai, and these turn out to correspond to cupping with an
euler class. □

Remark. Away from poles of ζ(X, s),

C(X,n) = ζ(X,n) = Z(X, p−n).



ZETA FUNCTIONS AND THH 7

C(X,n) is the number we get after correcting for the pole at n (which is where this
(1p−n − p−s)−ρn term comes from, and is why we need to take a cup product with the
Euler class e in that case to get a complex with finite cohomology).

We introduce a spectrum TC+, analogously to TC−, which is the fiber of the map
TC+ := fib(TC− can−−→ TP )

grnMTC(X)[−2n] ≃ Zsyn
p (n)(A)

πsh
2n(TC

+(X)) = N<nWΩX

πsh
2n(TC

−(X)) = N≥nWΩX

Remark. This follows from the picture Edith painted for us last time:

RΓsyn(gr
n
MTCA[−2n]) RΓsyn(π

sh
2n(TC

−
A )) RΓsyn(π

sh
2n(TPA))

Zp(n)(A) N≥n∆A{n} ∆A{n}

≃ ≃ ≃

Thus, our grand finale.

0.4. End Remarks. Why would this be interesting? Well, for example, this presenta-
tion of a zeta function in terms of localization invariants can be described and discussed
more generally. We can also ask for an L-function which takes in number fields and
function fields alike. Or even spectra (ongoing work of Gabe and me)!

Tate’s thesis showed us that all L-functions can be presented adelically, and that this
is their ”correct form” in some sense, they can all be analytically continued. We can use
that K-theoretic objects are described integrally to define correction terms/archimedian
terms in the full L-function, as was done by Flach-Morin last year. This is not the
case for TC, it is defined as a product over only nonarchimedian primes, we need
an archimedian version of it as well. I believe this may be resolved by the ongoing
foundational work of Wagner.
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