A Complete Proof of the Polynomial Ham Sandwich Theorem, Based on Gromov's Proof

Catherine Ray

November 27, 2016

We take Gromov's proof idea from [1], which was extracted and summarized in section 1 of a paper by Guth [2]. We fill out some of the bits that Guth skimms over.

Claim: Given $U_1, ..., U_r$ finite volume subsets of \mathbb{R}^n , there exists a nontrivial degree d hypersurface which bisects each one, if $\binom{d+n}{n} - 1 \leq r$.

First, let's establish some terms:

Let RP^N be the space of all degree d hypersurfaces in n variables, here $N := \binom{d+n}{n} - 1$ Let Bi(U) be the space of all degree d hypersurfaces in n variables which bisect the set U.

To say the polynomial P "bisects" $U \subset \mathbb{R}^n$, we mean that

$$\lambda(\{x \in U : P(x) \ge 0\}) - \lambda(\{x \in U : P(x) < 0\}) = 0$$

where λ is the standard Lesbesgue measure in \mathbb{R}^n .

Claim: Bi(U) is nonempty.

Proof. Given a not null homotopic loop in $\mathbb{R}P^N$, that is, $c \in \pi_1(\mathbb{R}P^N)$. Let c(0) = c(1) = P, that is, P is a hypersurface of degree d. We may lift this loop to S^N .

This loop may either remain a loop, that is, $\tilde{c}(0) = \tilde{c}(1)$, or, it may split, that is, $\tilde{c}(0) = -\tilde{c}(1)$. The lift must split because *c* corresponds to the nontrivial element of $\pi_1(RP^N) \simeq \mathbb{Z}/2$, which corresponds to the nontrivial deck transformation.

So, we have upstairs $\tilde{c}(0) =: P_0$, and $\tilde{c}(1) =: P_1 = -P_0$. We define the function

We define the function

$$F(t) := \lambda(\{x \in U : P_t(x) \ge 0\}) - \lambda(\{x \in U : P_t(x) < 0\})$$

This function is well defined and can take any real number value for $P_t \in S_N$.

If F(0) = 0, then $\pi(P_0) \in Bi(U)$ so we are done. Assume that F(0) is nonzero, then, $F(0) = k \in \mathbb{R}^{\times}$. Thus, F(1) = -k, because $P_1 = -P_0$, so the positive and negative components of F switch. By Guth's [2] *Continuity Lemma*, the function F varies continuously, so we may apply the intermediate value theorem: there must exist $\alpha \in (0, 1)$ such that $F(\alpha) = 0$. Thus, $\pi(P_{\alpha}) \in Bi(U)$.

So, we have shown that every not null homotopic loop in $\mathbb{R}P^N$ contains an element of Bi(U). Since $\pi_1(\mathbb{R}P^N)$ is nontrivial, this establishes that Bi(U) is nonempty.

We now wish to generalize this to show that $Bi(U_1, ..., U_r)$ is nonempty.

Claim: $Bi(U_1, ..., U_r)$ is nonempty.

Proof. We showed that every not null homotopic loop in \mathbb{RP}^N is cut by Bi(U). The contrapositive of this statement is that every loop in \mathbb{RP}^N not cut by Bi(U) is null homotopic in \mathbb{RP}^N . We may restate this as the map:

$$\pi_1(RP^N - Bi(U)) \to \pi_1(RP^N)$$

is zero.

We may abelianize both sides using the Hurewicz map to get that the map on \mathbb{Z} -homology is also zero:

$$H_1(RP^N - Bi(U), \mathbb{Z}) \to H_1(RP^N, \mathbb{Z})$$

The functor $\operatorname{Hom}(-;\mathbb{Z}/2)$ takes the zero map to the zero map. Given a group map $f: A \to B$, the induced map on $f^*: \operatorname{Hom}(B, F) \to \operatorname{Hom}(A, F)$ takes $\beta \mapsto \beta \circ f$. Precomposing any group homomorphism with the zero map gives the zero map, so $f = 0 \implies f^* = 0$.

Now, we use the universal coefficient theorem, and the fact that H_0 is always free, to get that the isomorphism

$$H^1(X, \mathbb{Z}/2) \simeq \operatorname{Hom}(H_1(X, \mathbb{Z}), \mathbb{Z}/2)$$

is natural and thus, the zero map is taken to the zero map. That is, the following map is zero

$$H^1(RP^N) \to H^1(RP^N - Bi(U_i))$$

Let a be the generator of $H^1(\mathbb{R}P^N) \simeq \mathbb{Z}/2$. We then have this exact sequence:

$$H^{1}(RP^{N}, RP^{N} - Bi(U_{i})) \longrightarrow H^{1}(RP^{N}) \longrightarrow H^{1}(RP^{N} - Bi(U_{i}))$$
$$a \longmapsto 0$$

Since a is nonzero, this implies that there exists a_i in the preimage which is nonzero.

$$H^{1}(RP^{N}, RP^{N} - Bi(U_{i})) \longrightarrow H^{1}(RP^{N}) \longrightarrow H^{1}(RP^{N} - Bi(U_{i}))$$
$$\exists a_{i} \longmapsto a \longmapsto 0$$

By the definition of relative cup product, $\smile_{i=1}^r a_r \in H^r(RP^N, \bigcup_{i=1}^r RP^N - Bi(U_i))$. In the long exact sequence:

$$H^{r}(RP^{N},\bigcup_{i=1}^{r}RP^{N}-Bi(U_{i})) \to H^{r}(RP^{N}) \to H^{r}(\bigcup_{i=1}^{r}RP^{N}-Bi(U_{i}))$$
$$\smile_{i=1}^{r}a_{r}\longmapsto a^{\smile r}\longmapsto 0$$

We assume that $r \leq N$, so that $H^r(RP^N) \simeq \mathbb{Z}/2 \neq 0$, which implies that $a^{\sim r}$ is nonzero. This implies that $\smile_{i=1}^r a_r$ is not zero.

Since $\bigvee_{i=1}^{r} a_r$ is a nonzero element of $H^r(RP^N, \bigcup_{i=1}^{r} RP^N - Bi(U_i))$, this implies that $H^r(RP^N, \bigcup_{i=1}^{r} RP^N - Bi(U_i)) \neq 0.$

Further,

$$\bigcup_{i=1}^{r} RP^{N} - Bi(U_{i}) = RP^{N} - \bigcap_{i=1}^{r} Bi(U_{i}) = RP^{N} - Bi(U_{1}, ..., U_{r})$$

Thus, $H^r(RP^N, RP^N - Bi(U_1, ..., U_r)) \neq 0$, which implies $RP^N - Bi(U_1, ..., U_r) \neq RP^N$, which demonstrates that $Bi(U_1, ..., U_r)$ is nonempty.

We see that we crucially used the assumption that $r \leq N$. This is where the bound comes from!

References

- M. Gromov, Isoperimetry of Waists and Concentration of Maps. Geometric and Functional Analysis, Vol. 13, 2003.
- [2] L. Guth, The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya conjecture. https://arxiv.org/pdf/0811.2251v2.pdf